98 resultados para CHEMISTRY, MULTIDISCIPLINARY
Resumo:
Seriously aggregated LDH agglomerates can be dispersed by a hydrothermal treatment into homogeneous stable suspensions that contain LDH particles in the range of 50−300 nm.
Resumo:
This paper reports a study on nanostructured magnesium composites with carbon nanotubes (CNTs) and catalytic transition metals with high H-2 adsorption capacity and fast adsorption kinetics at reduced hydrogenation temperatures. Nanostructures in such a composite are shown to be responsible for improvements in both adsorption capacity and kinetics. It is found that the carbon nanotubes significantly increase the hydrogen storage capacity, and the catalytic transition metals (Fe and Ti) greatly improve the kinetics. This could be understood from the enhancement of diffusion by CNTs and decrease in energy barrier of hydrogen dissociation at the magnesium surface.
Resumo:
We report a new approach to produce macroporous (110 nm in diameter) ordered siliceous foams (MOSF) by using block copolymers as templates in the absence of any organic cosolvent. The fine three-dimensional honeycomb structure of MOSF was determined by electron tomography. A formation mechanism of MOSF that spans from the atomic to macroscopic scale is proposed, which involves the cooperative self-assembly of unilamellar vesicles followed by the supra-assembly of vesicles. The fusion of soft vesicles finally leads to MOSF with well-ordered and defined honeycomb structures.
Resumo:
The introduction of mesoporous nanosize zirconia to the catalyst for methanol synthesis dedicates the nanosized catalyst and mesoporous duplicated properties. The catalyst bears the larger surface area, larger mesoporous volume and more uniform diameter, more surface metal atoms and oxygen vacancies than the catalyst prepared with the conventional coprecipitation method. The modification of microstructure and electronic effect could result in the change of the reduced chemical state and decrease of reducuction temperature of copper, donating the higher activity and methanol selectivity to the catalyst. The results of methanol synthesis demonstrate that the Cu+ is the optimum active site. Also, the interaction between the copper and zirconia shows the synergistic effect to fulfil the methanol synthesis.
Resumo:
We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.
Resumo:
Adsorption of p-cresol, nitrobenzene and p-nitrophenol on treated and untreated carbons is investigated systematically. The effects of carbon surface chemistry and solution pH are studied and discussed. All adsorption experiments were carried out in pH-controlled solutions to examine the adsorption properties of the adsorption systems where the solutes are in molecular as well as ionic forms. Using the homogeneous Langmuir equation, the single solute parameters are determined. These parameters are then used to predict the binary solute adsorption isotherms and gain further insights into the adsorption process. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The power of advanced transmission electron microscopy in determining the nanostructures and chemistry of nanosized materials on the applications in semiconductor quantum structures was demonstrated.
Resumo:
A novel member of the human relaxin subclass of the insulin superfamily was recently discovered during a genomics database search and named relaxin-3. Like human relaxin-1 and relaxin-2, relaxin-3 is predicted to consist of a two-chain structure and three disulfide bonds in a disposition identical to that of insulin. To undertake detailed biophysical and biological characterization of the peptide, its chemical synthesis was undertaken. In contrast to human relaxin-1 and relaxin-2, however, relaxin-3 could not be successfully prepared by simple combination of the individual chains, thus necessitating recourse to the use of a regioselective disulfide bond formation strategy. Solid phase synthesis of the separate, selectively S-protected A and B chains followed by their purification and the subsequent stepwise formation of each of the three disulfides led to the successful acquisition of human relaxin-3. Comprehensive chemical characterization confirmed both the correct chain orientation and the integrity of the synthetic product. Relaxin-3 was found to bind to and activate native relaxin receptors in vitro and stimulate water drinking through central relaxin receptors in vivo. Recent studies have demonstrated that relaxin-3 will bind to and activate human LGR7, but not LGR8, in vitro. Secondary structural analysis showed it to adopt a less ordered confirmation than either relaxin-1 or relaxin-2, reflecting the presence in the former of a greater percentage of nonhelical forming amino acids. NMR spectroscopy and simulated annealing calculations were used to determine the three-dimensional structure of relaxin-3 and to identify key structural differences between the human relaxins.