165 resultados para iPad[R] applications
Resumo:
We model a buyer who wishes to combine objects owned by two separate sellers in order to realize higher value. Sellers are able to avoid entering into negotiations with the buyer, so that the order in which they negotiate is endogenous. Holdout occurs if at least one of the sellers is not present in the first round of negotiations. We demonstrate that complementarity of the buyer's technology is a necessary condition for equilibrium holdout. Moreover, a rise in complementarity leads to an increased likelihood of holdout, and an increased efficiency loss. Applications include patents, the land assembly problem, and mergers.
Resumo:
Spatial data has now been used extensively in the Web environment, providing online customized maps and supporting map-based applications. The full potential of Web-based spatial applications, however, has yet to be achieved due to performance issues related to the large sizes and high complexity of spatial data. In this paper, we introduce a multiresolution approach to spatial data management and query processing such that the database server can choose spatial data at the right resolution level for different Web applications. One highly desirable property of the proposed approach is that the server-side processing cost and network traffic can be reduced when the level of resolution required by applications are low. Another advantage is that our approach pushes complex multiresolution structures and algorithms into the spatial database engine. That is, the developer of spatial Web applications needs not to be concerned with such complexity. This paper explains the basic idea, technical feasibility and applications of multiresolution spatial databases.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Increasing recognition of cultural influences on career development requires expanded theoretical and practical perspectives. Theories of career development need to explicate views of culture and provide direction for career counseling with clients who are culturally diverse. The Systems Theory Framework (STF) is a theoretical foundation that accounts for systems of influence on people's career development, including individual, social, and environmental/societal contexts. The discussion provides a rationale for systemic approaches in multicultural career counseling and introduces the central theoretical tenets of the STF. Through applications of the STF, career counselors are challenged to expand their roles and levels of intervention in multicultural career counseling.
Resumo:
We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.
Resumo:
This paper reports for the first time superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure. Compared to commercially used activated carbon electrode, Maxsorb, these OMC carbons have superior capacitive behavior, power output and high-frequency performance in EDLCs due to the unique structure of their mesopore network, which is more favorable for fast ionic transport than the pore networks in disordered microporous carbons. As evidenced by N-2 sorption, cyclic voltammetry and frequency response measurements, OMC carbons with large mesopores, and especially with 2-D pore symmetry, show superior capacitive behaviors (exhibiting a high capacitance of over 180 F/g even at very high sweep rate of 50 mV/s, as compared to much reduced capacitance of 73 F/g for Maxsorb at the same sweep rate). OMC carbons can provide much higher power density while still maintaining good energy density. OMC carbons demonstrate excellent high-frequency performances due to its higher surface area in pores larger than 3 nm. Such ordered mesoporous carbons (OMCs) offer a great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We characterize asymmetric equilibria in two-stage process innovation games and show that they are prevalent in the different models of R&D technology considered in the literature. Indeed, cooperation in R&D may be accompanied by high concentration in the product market. We show that while such an increase may be profitable, it may be socially inefficient.
Resumo:
The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.
Resumo:
The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.
Resumo:
We describe the twisted affine superalgebra sl(2\2)((2)) and its quantized version U-q[sl(2\2)((2))]. We investigate the tensor product representation of the four-dimensional grade star representation for the fixed-point sub superalgebra U-q[osp(2\2)]. We work out the tensor product decomposition explicitly and find that the decomposition is not completely reducible. Associated with this four-dimensional grade star representation we derive two U-q[osp(2\2)] invariant R-matrices: one of them corresponds to U-q [sl(2\2)(2)] and the other to U-q [osp(2\2)((1))]. Using the R-matrix for U-q[sl(2\2)((2))], we construct a new U-q[osp(2\2)] invariant strongly correlated electronic model, which is integrable in one dimension. Interestingly this model reduces in the q = 1 limit, to the one proposed by Essler et al which has a larger sl(2\2) symmetry.
Resumo:
0Nuclear magnetic resonance (n.m.r.) imaging was used to study the ingress of water into poly(tetrahydrofurfuryl methacrylate-co-hydroxyethyl methacrylate). The study offers strong evidence that the diffusion is Fickian in nature. The diffusion coefficient, D, obtained by fitting the underlying diffusion profile, attainable from the images, according to the equation for Fickian diffusion, is 1.5 x 10(-11) m(2) s(-1), which is in good correlation with the value of 2.1 x 10(-11) m(2) s(-1), obtained from mass uptake measurements. Additionally, from the T-2-weighted images, Superimposed features observed in addition to the underlying Fickian diffusion profiles were shown to have a longer spin-spin relaxation time, T-2. This Suggests the presence of two types of water within the polymer matrix; a less mobile phase of absorbed water that is interacting strongly with the polymer matrix and a more mobile phase of absorbed water residing within the cracks observed in the environmental scanning electron micrograph. (C) 1997 Elsevier Science Ltd.