114 resultados para Perfused Crocodile Heart


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. An isolated perfused rat liver (IPRL) preparation was used to investigate separately the disposition of the non-steroidal anti-inflammatory drug (NSAID) naproxen (NAP), its reactive acyl glucuronide metabolite (NAG) and a mixture of NAG rearrangement isomers (isoNAG), each at 30 mug NAP equivalents ml(-1) perfusate (n = 4 each group). 2. Following administration to the IPRL, NAP was eliminated slowly in a log-linear manner with an apparent elimination half-life (t(1/2)) of 13.4 +/-4.4 h. No metabolites were detected in perfusate, while NAG was the only metabolite present in bile in measurable amounts (3.9 +/-0.8%, of the dose). Following their administration to the IPRL, both NAG and isoNAG were rapidly hydrolysed (t(1/2) in perfusate=57 +/-3 and 75 +/- 14min respectively). NAG also rearranged to isoNAG in the perfusate. Both NAG and isoNAG were excreted intact in bile (24.6 and 14.8% of the NAG and isoNAG doses, respectively). 3. Covalent NAP-protein adducts in the liver increased as the dose changed from NAP to NAG to isoNAG (0.20 to 0.34 to 0.48% of the doses, respectively). Similarly, formation of covalent NAP-protein adducts in perfusate were greater in isoNAG-dosed perfusions. The comparative results Suggest that isoNAG is a better substrate for adduct formation with liver proteins than NAG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the recently identified human peptide urotensin-II (hU-II) were investigated on human cardiac muscle contractility and coronary artery tone. In right atrial trabeculae from non-failing hearts, hU-II caused a concentration-dependent increase in contractile force (pEC(50)=9.5+/-0.1; E-max= 31.3+/-4.8% compared to 9.25 mM Ca2+; n = 9) with no change in contraction duration. In right ventricular trabeculae from explanted hearts, 20 nM hU-II caused a small increase in contractile force (7.8+/-1.4% compared to 9.25 mM Ca2+; n= 3/6 tissues from 2 out of 4 patients). The peptide caused arrhythmic contractions in 3/26 right atrial trabeculae from 3/9 patients in an experimental model of arrhythmia and therefore has less potential to cause arrhythmias than ET-1. hU-II (20 nM) increased tone (17.9% of the response to 90 mM KCI) in 7/7 tissues from 1 patient, with no response detected in 8/8 tissues from 2 patients. hU-II is a potent cardiac stimulant with low efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During thermo regulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a beta-adrenergic antagonist. Cholinergic and beta-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3%) at the commencement of heating, and decreased to 30.7% at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min(-1)) as the heat source was switched off, and this drop in heart rate coincided with either a drop in beta-adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and beta-adrenergic blockade. The results showed that cholinergic and beta-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Fibrosis leads to chronic impairment of cardiac and renal function and thus reversal of existing fibrosis may improve function and survival. This project has determined whether pirfenidone, a new antifibrotic compound, and spironolactone, an aldosterone antagonist, reverse both deposition of the major extracellular matrix proteins, collagen and fibronectin, and functional changes in the streptozotocin(STZ)-diabetic rat. 2 Streptozotocin (65 mg kg(-1) i.v.)-treated rats given pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone; approximately-200 mg kg(-1) day(-1) as 0.2-2g l(-1) drinking water) or spironolactone (50 mg kg(-1) day(-1) s.c.) for 4 weeks starting 4 weeks after STZ showed no attenuation of the increased blood glucose concentrations and increased food and water intakes which characterize diabetes in this model. 3 STZ-treatment increased perivascular and interstitial collagen deposition in the left ventricle and kidney, and surrounding the aorta. Cardiac, renal and plasma fibronectin concentrations increased in STZ-diabetic rats. Passive diastolic stiffness increased in isolated hearts from STZ-diabetic rats. Both pirfenidone and spironolactone treatment attenuated these increases without normalizing the decreased + dP/dt(max) of STZ-diabetic hearts. 4 Left ventricular papillary muscles from STZ-treated rats showed decreased maximal positive inotropic responses to noradrenaline, EMD 57033 (calcium sensitizer) and calcium chloride; this was not reversed by pirfenidone or spironolactone treatment. STZ-treatment transiently decreased GFR and urine flow rates in isolated perfused kidneys; pirfenidone but not spironolactone prevented the return to control values. 5 Thus, short-term pirfenidone and spironolactone treatment reversed cardiac and renal fibrosis and attenuated the increased diastolic stiffness without normalizing cardiac contractility or renal function in STZ-diabetic rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute heart failure is a life-threatening medical emergency, most commonly occurring as an immediate or delayed complication of acute myocardial infarction (AMI), or resulting from severe hypertension or valvular defects (stenosis or incompetence). Occasionally it is caused by patients' non-compliance with medication orders. In this case the patient had a history of three previous AMIs, controlled hypertension, and controlled congestive heart failure (CHF) for which he took two 40mg frusemide tablets (a very potent oral diuretic) each morning. Because he had experienced bladder discomfort during the latter stages of previous appointments he decided to delay taking the diuretic until after his appointment an acute heart failure ensued.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial function plays a key role in the local regulation of vascular tone. Alterations in endothelial function may result in impaired release of endothelium-derived relaxing factors or increased release of endothelium-derived contracting factors. Heart failure may impair endothelial function by means of reduced synthesis and release of nitric oxide (NO) or by increased degradation of NO and increased production of endothelin-1. Endothelial dysfunction may worsen heart function by means of peripheral effects, causing increased afterload and central effects such as myocardial ischemia and inducible nitric oxide synthase (iNOS)-induced detrimental effects. Evidence from clinical studies has suggested that there is a correlation between decreased endothelial function and increasing severity of congestive heart failure (CHF). Treatments that improve heart function may also improve endothelial dysfunction. The relationship between endothelial dysfunction and heart failure may be masked by the stage of endothelial dysfunction, the location of vessels being tested, and the state of endothelial-dependent vasodilatation response.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine whether NKP608, a novel 1-benzoyl-2-benzyl-4-aminopiperidine NK1 receptor antagonist, inhibits substance P (SP)-induced airway plasma protein exudation in vivo. Material: Anaesthetised English shorthair guinea-pigs and Wistar rats. Treatment: Tachykinin peptides were applied topically onto the trachea and antagonists administered intravenously. Methods: Tracheal segments isolated in situ were perfused with saline and plasma-derived protein assayed in the perfusate. Results: SP (1 muM) caused plasma protein exudation, which was abolished by an NK1 antagonist (RP 67580, 1.75 mumol/kg) but unaffected by an NK2 antagonist (SR 48968, 1.75 mumol/kg) indicating the response is NK1-receptor-mediated. This was confirmed with a response to an NK1 agonist ([Sar(9), Met(O-2)(11)]-SP, 1 muM) but none to an NK2 agonist ([betaAla(8)]-neurokinin A(4-10), 1 muM). NKP608 inhibited SP responses with estimated ID50 values (mumol/kg) of 0.0044 (guinea-pigs) and 0.19 (rats). Conclusions: NKP608 is an antagonist in vivo of NK1 receptor-induced tracheal plasma protein exudation and is more potent in guinea-pigs than rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To measure the cost-effectiveness of cholesterol-lowering therapy with pravastatin in patients with established ischaemic heart disease and average baseline cholesterol levels. Design: Prospective economic evaluation within a double-blind randomised trial (Long-Term Intervention with Pravastatin in Ischaemic Disease [LIPID]), in which patients with a history of unstable angina or previous myocardial infarction were randomised to receive 40 mg of pravastatin daily or matching placebo. Patients and setting: 9014 patients aged 35-75 years from 85 centres in Australia and New Zealand, recruited from June 1990 to December 1992. Main outcome measures: Cost per death averted, cost per life-year gained, and cost per quality-adjusted life-year gained, calculated from measures of hospitalisations, medication use, outpatient visits, and quality of life. Results: The LIPID trial showed a 22% relative reduction in all-cause mortality (P < 0.001). Over a mean follow-up of 6 years, hospital admissions for coronary heart disease and coronary revascularisation were reduced by about 20%. Over this period, pravastatin cost $A4913 per patient, but reduced total hospitalisation costs by $A1385 per patient and other long-term medication costs by $A360 per patient. In a subsample of patients, average quality of life was 0.98 (where 0 = dead and 1 = normal good health); the treatment groups were not significantly different. The absolute reduction in all-cause mortality was 3.0% (95% CI, 1.6%-4.4%), and the incremental cost was $3246 per patient, resulting in a cost per life saved of $107730 (95% Cl, $68626-$209881) within the study period. Extrapolating long-term survival from the placebo group, the undiscounted cost per life-year saved was $7695 (and $10 938 with costs and life-years discounted at an annual rate of 5%). Conclusions: Pravastatin therapy for patients with a history of myocardial infarction or unstable angina and average cholesterol levels reduces all-cause mortality and appears cost effective compared with accepted treatments in high-income countries.