95 resultados para Negative magnetic permeability
Resumo:
Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less magical, and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature real-world problem relating to the lengths of paths in a network.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
l-(BETS)2FeCl4 undergoes transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe31 magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. We show how He can be extracted from the observed splitting of the Shubnikov–de Haas frequencies. We predict the field range for field-induced superconductivity in other materials.
Resumo:
MS/MS data derived from the [M-H](-) ions of desulfated caerulein peptides provide (i) sequencing information from a combination of alpha, beta and gamma backbone cleavages, and (ii) identification of specific amino acid side chains by side-chain cleavages [e.g. Ser (-CH2O), Thr (-CH3CHO) and Asp (-H2O)] (fragmentations having no counterparts in positive ion spectra). In addition, delta and/or gamma backbone cleavage ions from Asp residues identify the position of these residues in the peptide. In contrast, neither delta nor gamma cleavage ions are observed from either the Gln2 residue nor from Phe residues. Full structural information can be obtained from a consideration of the positive and negative ion MS/MS data in concert. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Magnetic resonance imaging (MRI) is an easily automated, reliable technique to investigate axial mixing within rotating drums. Moist bran can be clearly differentiated from dry bran using MRI allowing a non-segregating tracer for axial mixing. For a 20-cm diameter drum, the axial dispersion coefficient in the particle bed was 0.51 cm s(-2). Axial dispersion is scale-dependent.
Resumo:
Ecosystem management such as plant residue retention and prescribed burning can significantly affect soil organic matter (SOM) composition and, thereby, the closely associated carbon (C) and nitrogen (N) cycling processes, which underpin terrestrial ecosystem productivity and sustainability. Humic acid (HA) is an important SOM component and its chemical composition has attracted much attention. Here we report the first application of N-14 nuclear magnetic resonance (NMR) spectroscopy to soil HA study, revealing the surprising existence of nitrate-N and ammonia-N in the HAs. This newly discovered HA nitrate-N, though in a relatively low concentrations, is closely related to soil N availability and responsive to plant residue management regimes in contrasting forest ecosystems. The HA nitrate-N may be a useful and sensitive biochemical indicator of SOM quality in response to different ecosystem management regimes.
Resumo:
Background-In vivo methods to evaluate the size and composition of atherosclerotic lesions in animal models of atherosclerosis would assist in the testing of antiatherosclerotic drugs. We have developed an MRI method of detecting atherosclerotic plaque in the major vessels at the base of the heart in low-density lipoprotein (LDL) receptor-knockout (LDLR-/-) mice on a high-fat diet. Methods and Results-Three-dimensional fast spin-echo magnetic resonance images were acquired at 7 T by use of cardiac and respiratory triggering, with approximate to140-mum isotropic resolution, over 30 minutes. Comparison of normal and fat-suppressed images from female LDLR-/- mice I week before and 8 and 12 weeks after the transfer to a high-fat diet allowed visualization and quantification of plaque development in the innominate artery in vivo. Plaque mean cross-sectional area was significantly greater at week 12 in the LDLR-/- mice (0.14+/-0.086 mm(2) [mean+/-SD]) than in wild-type control mice on a normal diet (0.017+/-0.031 mm(2), p
Resumo:
The presence of a basal nonselective cation permeability was mainly investigated in primary cultures of rat cardiac microvascular endothelial cells (CMEC) by applying both the patch-clamp technique and Fura-2 microfluorimetry. With low EGTA in the pipette solution, the resting membrane potential of CMEC was -21.2 +/- 1.1 mV, and a Ca2+-activated Cl- conductance was present. When the intracellular Ca2+ was buffered with high EGTA, the membrane potential decreased to 5.5 +/- 1.2 mV. In this condition, full or partial substitution of external Na+ by NMDG(+) proportionally reduced the inward component of the basal I-V relationship. This current was dependent on extracellular monovalent cations with a permeability sequence of K+ > Cs+ > Na+ > Li+ and was inhibited by Ca2+, La3+, Gd3+, and amiloride. The K+/Na+ permeability ratio, determined using the Goldman-Hodgkin-Katz equation, was 2.01. The outward component of the basal I-V relationship was reduced when intracellular K+ was replaced by NMDG(+), but was not sensitive to substitution by Cs+. Finally, microfluorimetric experiments indicated the existence of a basal Ca2+ entry pathway, inhibited by La3+ and Gd3+. The basal nonselective cation permeability in CMEC could be involved both in the control of myocardial ionic homeostasis, according to the model of the blood-heart barrier, and in the modulation of Ca2+ -dependent processes. (C) 2002 Elsevier Science (USA).
Resumo:
Low concentrate density from wet drum magnetic separators in dense medium circuits can cause operating difficulties due to inability to obtain the required circulating medium density and, indirectly, high medium solids losses. The literature is almost silent on the processes controlling concentrate density. However, the common name for the region through which concentrate is discharged-the squeeze pan gap-implies that some extrusion process is thought to be at work. There is no model of magnetics recovery in a wet drum magnetic separator, which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was done using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 turn diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in this work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. It is proposed, based both on the experimental observations of the present work and on observations reported in the literature, that the process controlling magnetic separator concentrate density is one of drainage. Such a process should be able to be defined by an initial moisture, a drainage rate and a drainage time, the latter being defined by the volumetric flowrate and the volume within the drainage zone. The magnetics can be characterised by an experimentally derived ultimate drainage moisture. A model based on these concepts and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to be a good fit to data over concentrate solids content values from 40% solids to 80% solids and for both magnetite and ferrosilicon feeds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Loss of magnetic medium solids from dense medium circuits is a substantial contributor to operating cost. Much of this loss is by way of wet drum magnetic separator effluent. A model of the separator would be useful for process design, optimisation and control. A review of the literature established that although various rules of thumb exist, largely based on empirical or anecdotal evidence, there is no model of magnetics recovery in a wet drum magnetic separator which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was therefore carried out using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 mm diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in the work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. Observations carried out as an adjunct to this work, as well as magnetic theory, suggests that the capture of magnetic particles in the wet drum magnetic separator is by a flocculation process. Such a process should be defined by a flocculation rate and a flocculation time; the latter being defined by the volumetric flowrate and the volume within the separation zone. A model based on this concept and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to provide a satisfactory fit to the data over three orders of magnitude of magnetics loss. (C) 2003 Elsevier Science BY. All rights reserved.
Resumo:
The regulation of hedgehog signaling by vesicular trafficking was exemplified by the finding that Rab23, a Rab-GTPase vesicular transport protein, is mutated in open brain mice. In this study, the localization of Rab23 was analyzed by light and immunoelectron microscopy after expression of wild-type (Rab23-GFP), constitutively active Rab23 (Rab23Q68L-GFP), and inactive Rab23 (Rab23S23N-GFP) in a range of mammalian cell types. Rab23-GFP and Rab23Q68L-GFP were predominantly localized to the plasma membrane but were also associated with intracellular vesicular structures, whereas Rab23S23N-GFP was predominantly cytosolic. Vesicular Rab23-GFP colocalized with Rab5Q79L and internalized transferrin-biotin, but not with a marker of the late endosome or the Golgi complex. To investigate Rab23 with respect to members of the hedgehog signaling pathway, Rab23-GFP was coexpressed with either patched or smoothened. Patched colocalized with intracellular Rab23-GFP but smoothened did not. Analysis of patched distribution by light and immunoelectron microscopy revealed it is primarily localized to endosomal elements, including transferrin receptor-positive early endosomes and putative endosome carrier vesicles and, to a lesser extent, with LBPA-positive late endosomes, but was excluded from the plasma membrane. Neither patched or smoothened distribution was altered in the presence of wild-type nor mutant Rab23-GFP, suggesting that despite the endosomal colocalization of Rab23 and patched, it is likely that Rab23 acts more distally in regulating hedgehog signaling.
Resumo:
In order to establish the relationship between solute lipophilicity and skin penetration (including flux and concentration behavior), we examined the in vitro penetration and membrane concentration of a series of homologous alcohols (C2-C10) applied topically in aqueous solutions to human epidermal, full-thickness, and dermal membranes. The partitioning/distribution of each alcohol between the donor solution, stratum corneum, viable epidermis, dermis, and receptor phase compartments was determined during the penetration process and separately to isolated samples of each tissue type. Maximum flux and permeability coefficients are compared for each membrane and estimates of alcohol diffusivity are made based on flux/concentration data and also the related tissue resistance (the reciprocal of permeability coefficient) for each membrane type. The permeability coefficient increased with increasing lipophilicity to alcohol C8 (octanol) with no further increase for C10 (decanol). Log vehicle:stratum corneum partition coefficients were related to logP , and the concentration of alcohols in each of the tissue layers appeared to increase with lipophilicity. No difference was measured in the diffusivity of smaller more polar alcohols in the three membranes; however, the larger more lipophilic solutes showed slower diffusivity values. The study showed that the dermis may be a much more lipophilic environment than originally believed and that distribution of smaller nonionized solutes into local tissues below a site of topical application may be estimated based on knowledge of their lipophilicity alone.
Resumo:
This paper continues the development of a new approach for the design of shim and gradient coils, used in magnetic resonance imaging (MRI) applications. A cylindrical primary coil of radius a and length 2L is placed inside a co-axial shield cylinder of radius b. An active shielding strategy is used to create a desired target field at an arbitrarily specified (cylindrical) location within the primary coil, and to annul the field at a certain radius outside the shield. The form of the interior target field may be chosen arbitrarily by the designer, although zonal and tesseral harmonics are typically used in MRI applications. The method presented here designs coil windings on both the primary and shielding cylinders, to produce fields that conform to the specified interior target field and the annulled field exterior to the shield. An additional feature of the method presented here is that the target field inside the primary coil is matched at two different radii, to improve overall accuracy. The method is illustrated by designing several shielded shim coils, for creating higher order tesseral fields located asymmetrically within the coil. The simpler case of pure zonal fields is discussed separately and applied to the design of some higher order shielded coils.