226 resultados para KOH-activated carbon


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Henry constant is commonly used as a measure of how strong an adsorbate is attracted towards a solid surface and is regarded as one of the fundamental parameters in adsorption studies. Having a sound basis in thermodynamics, the Henry Law is often used as a criterion to evaluate the validity of adsorption isotherm equations. However, the application of the Henry Law for microporous materials, especially microporous activated carbon, remains questionable. It is the aim of this paper to examine the Henry Law behavior of supercritical adsorbates in carbonaceous pores of different sizes, and to define the conditions for the Henry Law to be applicable for carbonaceous adsorbents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Dubinin-Radushkevich (DR) equation is widely used for description of adsorption in microporous materials, especially those of a carbonaceous origin. The equation has a semi-empirical origin and is based on the assumptions of a change in the potential energy between the gas and adsorbed phases and a characteristic energy of a given solid. This equation yields a macroscopic behaviour of adsorption loading for a given pressure. In this paper, we apply a theory developed in our group to investigate the underlying mechanism of adsorption as an alternative to the macroscopic description using the DR equation. Using this approach, we are able to establish a detailed picture of the adsorption in the whole range of the micropore system. This is different from the DR equation, which provides an overall description of the process. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review provides an overview of surface diffusion and capillary condensate flow in porous media. Emphasis has been placed on the distinction between purely surface diffusion, multilayer surface diffusion, and, capillary condensate flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel and simple method for determination of micropore network connectivity of activated carbon using liquid phase adsorption is presented in this paper. The method is applied to three different commercial carbons with eight different liquid phase adsorptives as probes. The effect of the pore network connectivity on the prediction of multicomponent adsorption equilibria was also studied. For this purpose, the Ideal Adsorbed Solution Theory (IAST) was used in conjuction with the modified DR single component isotherm. The results of comparison with experimental data show that incorporation of the connectivity, and consideration of percolation processes associated with the different molecular sizes of the adsorptives in the mixture, can improve the performance of the IAST in predicting multicomponent adsorption equilibria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Density functional theory for adsorption in carbons is adapted here to incorporate a random distribution of pore wall thickness in the solid, and it is shown that the mean pore wall thickness is intimately related to the pore size distribution characteristics. For typical carbons the pore walls are estimated to comprise only about two graphene layers, and application of the modified density functional theory approach shows that the commonly used assumption of infinitely thick walls can severely affect the results for adsorption in small pores under both supercritical and subcritical conditions. Under supercritical conditions the Henry's law coefficient is overpredicted by as much as a factor of 2, while under subcritical conditions pore wall heterogeneity appears to modify transitions in small pores into a sequence of smaller ones corresponding to pores with different wall thicknesses. The results suggest the need to improve current pore size distrubution analysis methods to allow for pore wall heterogeneity. The density functional theory is further extended here to allow for interpore adsorbate interactions, and it appears that these interaction are negligible for small molecules such as nitrogen but significant for more strongly interacting heavier molecules such as butane, for which the traditional independent pore model may not be adequate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A thermodynamic approach based on the Bender equation of state is suggested for the analysis of supercritical gas adsorption on activated carbons at high pressure. The approach accounts for the equality of the chemical potential in the adsorbed phase and that in the corresponding bulk phase and the distribution of elements of the adsorption volume (EAV) over the potential energy for gas-solid interaction. This scheme is extended to subcritical fluid adsorption and takes into account the phase transition in EAV The method is adapted to gravimetric measurements of mass excess adsorption and has been applied to the adsorption of argon, nitrogen, methane, ethane, carbon dioxide, and helium on activated carbon Norit R I in the temperature range from 25 to 70 C. The distribution function of adsorption volume elements over potentials exhibits overlapping peaks and is consistently reproduced for different gases. It was found that the distribution function changes weakly with temperature, which was confirmed by its comparison with the distribution function obtained by the same method using nitrogen adsorption isotherm at 77 K. It was shown that parameters such as pore volume and skeleton density can be determined directly from adsorption measurements, while the conventional approach of helium expansion at room temperature can lead to erroneous results due to the adsorption of helium in small pores of activated carbon. The approach is a convenient tool for analysis and correlation of excess adsorption isotherms over a wide range of pressure and temperature. This approach can be readily extended to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we apply a method recently developed by Do and co-workers(1) for the prediction of adsorption isotherms of pure vapors on carbonaceous materials. The information required for the prediction is the pore size distribution and the BET constant, C, of a corresponding nonporous surface (graphite). The dispersive adsorption force is assumed to be the dominant force in adsorption mechanism. This applies to nonpolar and weakly polar hydrocarbons. We test this predictive model against the adsorption data of benzene, toluene, n-pentane, n-hexane, and ethanol on a commercial activated carbon. It is found that the predictions are excellent for all adsorbates tested with the exception of ethanol where the predicted values are about 10% less than the experimental data, and this is probably attributed to the electrostatic interaction between ethanol molecules and the functional groups on the carbon surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present a model accounting for the adsorbate-adsorbate interaction in the adsorbed phase in the description of adsorption of pure vapors on carbonaceous materials. The details of the adsorbate-adsorbate interaction of a particular species are obtained from the analysis of its adsorption data on non-porous carbon black. The predictability of the model is tested against the adsorption isotherm data for benzene, toluene, n-pentane, n-hexane, carbon tetrachloride, methanol and ethanol on microporous activated carbon. It was found that the model prediction for non-polar adsorbates are satisfactory while it under-predicts for polar adsorbates, which is attributed to their additional interaction with functional groups. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we revisit the surface mass excess in adsorption studies and investigate the role of the volume of the adsorbed phase and its density in the analysis of supercritical gas adsorption in non-porous as well as microporous solids. For many supercritical fluids tested (krypton, argon, nitrogen, methane) on many different carbonaceous solids, it is found that the volume of the adsorbed phase is confined mostly to a geometrical volume having a thickness of up to a few molecular diameters. At high pressure the adsorbed phase density is also found to be very close to but never equal or greater than the liquid phase density. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of toxic cyanobacteria in drinking water reservoirs renders the need to develop treatment methods for the 'safe' removal of their associated toxins. Chlorine has been shown to successfully remove a range of cyanotoxins including microcystins, cylindrospermopsin and saxitoxins. Each cyanotoxin requires specific treatment parameters, particularly solution pH and free chlorine residual. However, currently there has not been any investigation into the toxicological effect of solutions treated for the removal of these cyanotoxins by chlorine. Using the P53(def) transgenic mouse model mate and female C57BL/6J hybrid mice were used to investigate potential cancer inducing effects from such oral dosing solutions. Both purified cyanotoxins and toxic cell-free extract cyanobacterial solutions were chlorinated and administered over 90 and 170 days (respectively) in drinking water. No increase in cancer was found in any treatment. The parent cyanotoxins, microcystins, cylindrospermopsin and saxitoxins were readily removed by chlorine. There was no significant increase in the disinfection byproducts trihalomethanes or haloacetic acids, levels found were well below guideline values. Histological examination identified no effect of treatment solutions except male mice treated with chlorinated cylindrospermopsin (as a cell free extract). In this instance 40% of males were found to have fatty vacuolation in their livers, cause unknown. It is recommended that further toxicology be undertaken on chlorinated cyanobacterial solutions, particularly for non-genotoxic carcinogenic compounds, for example the Tg. AC transgenic mouse model. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anion clay hydrotalcite sorbents were prepared to investigate their adsorption capabilities in the removal of coloured organic substances from various aqueous systems. Anion clay hydrotalcite was found to be particularly effective at removing negatively charged species. Its excellent uptake levels of anionic species can be accounted for by its high surface area and anion exchange ability. That is, coloured substances can be adsorbed on the surface or enter the interlayer region of the clay by anion exchange. In the adsorption of Acid Blue 29 on the anion clay hydrotalcite, an equilibrium time of 1 h with dye removal exceeding 99% was obtained. The hydrotalcite was found to have an adsorption capacity marginally below that of commercial activated carbon. It should be noted that the spent sorbents can be regenerated easily by heating at 723 K to remove all adsorbed organics. The reused sorbents displayed greater adsorption capabilities than the newly prepared hydrotalcite. Hence, the anion clay hydrotalcite is easily recoverable and reusable such that it is a promising sorbent for environmental and purification purposes. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A review is given of the pore characterization of carbonaceous materials, including activated carbon, carbon fibres, carbon nanotubes, etc., using adsorption techniques. Since the pores of carbon media are mostly of molecular dimensions, the appropriate modem tools for the analysis of adsorption isotherms are grand canonical Monte Carlo (GCMC) simulations and density functional theory (DFT). These techniques are presented and applications of such tools in the derivation of pore-size distribution highlighted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite a century's knowledge that soluble aluminum (Al) is associated with acid soils and poor plant growth, it is still uncertain how Al exerts its deleterious effects. Hypotheses include reactions of Al with components of the cell wall, plasmalemma, or cytoplasm of cells close to the root tip, thereby reducing cell expansion and root growth. Digital microscopy was used to determine the initial injuries of soluble Al to mungbean (Vigna radiata L.) roots. Roots of young seedlings were marked with activated carbon particles and grown in 1 mm CaCl2 solution at pH 6 for ca. 100 min (control period), and AlCl3 solution was added to ensure a final concentration of 50 muM Al (pH 4). Further studies were conducted on the effects of pH 4 with and without 50 muM Al. Four distinct, but possibly related, initial detrimental effects of soluble Al were noted. First, there was a 56-75% reduction in the root elongation rate, first evident 18-52 min after the addition of Al, root elongation continuing at a decreased rate for ca. 20 It. Decreasing solution pH from 6 to 4 increased the root elongation rate 4-fold after 5 min, which decreased to close to the original rate after 130 min. The addition of Al during the period of rapid growth at pH 4 reduced the root elongation rate by 71% 14 min after the addition of Al. The activated carbon marks on the roots showed that, during the control period, the zone of maximum root growth occurred at 2,200-5,100 mum from the root tip (i.e. the cell elongation zone). It was there that Al first exerted its detrimental effect and low pH increased root elongation. Second, soluble Al prevented the progress of cells from the transition to the elongation phase, resulting in a considerable reduction of root growth over the longer term. The third type of soluble Al injury occurred after exposure for ca. 4 h to 50 mum Al when a kink developed at 2,370 mum from the root tip. Fourth, ruptures of the root epidermal and cortical cells at 1,900-2,300 mum from the tip occurred greater than or equal to4.3 h after exposure to soluble Al. The timing and location of Al injuries support the contention that Al initially reduces cell elongation, thus decreasing root growth and causing damage to epidermal and cortical cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diffusion of hexane, heptane, octane, and decane in nanoporous MCM-41 silica at various temperatures is investigated by the zero-length-column method. The diffusion coefficients are derived by a complete-time-range analysis of desorption curves at different purge flow rates and temperatures. The results show that the calculated low-coverage diffusivity values decrease monotonically, and the derived Henry's law constants increase, as the carbon number of paraffins increases. The study reveals that transport is strongly influenced by intracrystalline diffusion and dominated by the sorbate-sorbent interaction. The diffusion activation energy and adsorption isosteric heat at zero loading increase monotonically with the carbon number of linear paraffins, but their ratio is essentially constant for each adsorbate compound.