146 resultados para HARMONIC IMPEDANCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detection of seizure in the newborn is a critical aspect of neurological research. Current automatic detection techniques are difficult to assess due to the problems associated with acquiring and labelling newborn electroencephalogram (EEG) data. A realistic model for newborn EEG would allow confident development, assessment and comparison of these detection techniques. This paper presents a model for newborn EEG that accounts for its self-similar and non-stationary nature. The model consists of background and seizure sub-models. The newborn EEG background model is based on the short-time power spectrum with a time-varying power law. The relationship between the fractal dimension and the power law of a power spectrum is utilized for accurate estimation of the short-time power law exponent. The newborn EEG seizure model is based on a well-known time-frequency signal model. This model addresses all significant time-frequency characteristics of newborn EEG seizure which include; multiple components or harmonics, piecewise linear instantaneous frequency laws and harmonic amplitude modulation. Estimates of the parameters of both models are shown to be random and are modelled using the data from a total of 500 background epochs and 204 seizure epochs. The newborn EEG background and seizure models are validated against real newborn EEG data using the correlation coefficient. The results show that the output of the proposed models has a higher correlation with real newborn EEG than currently accepted models (a 10% and 38% improvement for background and seizure models, respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical behaviour of magnesium was studied in representative chloride and sulphate solutions including NaCl, Na2SO4, NaOH and their mixed solutions, HCl, and H2SO4: (1) by measuring electrochemical polarisation curves, (2) by using electrochemical impedance spectroscopy (EIS), and (3) by simultaneous measurement of hydrogen gas evolution and measurement of magnesium dissolution rates using inductively coupled plasma atomic emission spectrophotometry (ICPEAS). These experiments showed that a partially protective surface film played an important role in the dissolution of magnesium in chloride and sulphate solutions. Furthermore, the experimental data were consistent with the involvement of the intermediate species Mg+ in magnesium dissolution at film imperfections or on a film-free surface. At such sites, magnesium first oxidised electrochemically to the intermediate species Mg+, and then the intermediate species chemically reacted with water to produce hydrogen and Mg2+. The presence of Cl- ions increased the film free area, and accelerated the electrochemical reaction rate from magnesium metal to Mg+. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of skin temperature and hydration status has been suggested by some researchers as a common cause of variation in bioimpedance measurements of the body. This paper details a simple method of measuring the transverse impedance of the skin. The measured resistance and reactance was found to decrease by 35% and 18% for an increase of 20 degrees C. Similarly a decrease in resistance and reactance of 20% and 25% respectively was detected after hydration of the skin. However, the changes in skin temperature and hydration were found to have no significant effect on the whole body bioimpedance measurements using the standard tetra-polar electrode technique. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The common approach of bioelectrical impedance analysis to estimate body water uses a wrist-to-ankle methodology which, although not indicated by theory, has the advantage of ease of application particularly for clinical studies involving patients with debilitating diseases. A number of authors have suggested the use of a segmental protocol in which the impedances of the trunk and limbs are measured separately to provide a methodology more in keeping with basic theory. The segmental protocol hits not, however, been generally adopted, partly because of the increased complexity involved in its application, and partly because studies comparing the two methodologies have not clearly demonstrated a significant improvement from the segmental methodology. We have conducted a small pilot study involving ten subjects to investigate the efficacy of the two methodologies in a group of normal subjects. The study did not require the independent measure of body water, by for example isotope dilution, as the subjects were maintained in a state of constant hydration with only the distribution between limbs and trunk changing as a result of change in posture. The results demonstrate a significant difference between the two methodologies in predicting the expected constancy of body water in this study, with the segmental methodology indicating a mean percentage change in extracellular water of -2.2%; which was not significantly different from the expected null result, whereas the wrist-to-ankle methodology indicated a mean percentage change in extracellular water of -6.6%. This is significantly different from the null result, and from the value obtained from the segmental methodology (p = 0.006). Similar results were obtained using estimates of total body water from the two methodologies. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the interaction of a two-level atom with two intense lasers: a strong laser of Rabi frequency 2 Ohm on resonance with the atomic transition, and a weaker laser detuned by 7 Ohm/n. i.e. by a subharmonic of the Rabi frequency of the first. The second laser dresses the dressed states created by the first in an n-photon process. We calculate the energy levels and eigenstates of this doubly-dressed atom, and find a new phenomenon: the splitting of the energy levels due to an n-photon coupling between them, resulting in a multiphoton AC Stark effect. We illustrate this effect in the fluorescence spectrum, and show that the spectrum contains triplets at the subharmonic as well as harmonic resonance frequencies with a clear dependence on the order n of the resonance and the ratio a of the Rabi frequencies of the lasers. (C) 1998 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the quantum field theory of two bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process of second-harmonic generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. The quantum solitons or energy eigenstates (bound-state solutions) are obtained exactly in the simplest case of two-particle binding, in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension. The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. To estimate the physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically observable values.