85 resultados para Film Industry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores several important aspects of the management of new product development (NPD) in the Chinese steel industry. Specifically it explores NPD success factors, the importance of management functions to new product success and measures of new product success from the perspective of the industry's practitioners. Based on a sample of 190 industrial practitioners from 18 Chinese steel companies, the study provides a mixed picture as China makes the transition from a centrally-controlled to market-based economy. On one hand, respondents ranked understanding users' needs as the most important factor influencing the performance of the new products. Further, formulating new product strategy and strengthening market research are perceived as the most important managerial functions in NPD. However, technical performance measures are regarded as more important and are more widely used in industry than market-based or financial measures of success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of iron carbonate (FeCO3) film growth is proposed, which is an extension of the recent mechanistic model of carbon dioxide (CO2) corrosion by Nesic, et al. In the present model, the film growth occurs by precipitation of iron carbonate once saturation is exceeded. The kinetics of precipitation is dependent on temperature and local species concentrations that are calculated by solving the coupled species transport equations. Precipitation tends to build up a layer of FeCO3 on the surface of the steel and reduce the corrosion rate. On the other hand, the corrosion process induces voids under the precipitated film, thus increasing the porosity and leading to a higher corrosion rate. Depending on the environmental parameters such as temperature, pH, CO2 partial pressure, velocity, etc., the balance of the two processes can lead to a variety of outcomes. Very protective films and low corrosion rates are predicted at high pH, temperature, CO2 partial pressure, and Fe2+ ion concentration due to formation of dense protective films as expected. The model has been successfully calibrated against limited experimental data. Parametric testing of the model has been done to gain insight into the effect of various environmental parameters on iron carbonate film formation. The trends shown in the predictions agreed well with the general understanding of the CO2 corrosion process in the presence of iron carbonate films. The present model confirms that the concept of scaling tendency is a good tool for predicting the likelihood of protective iron carbonate film formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Work-related falls continues to be one of the leading causes of fatalities in the Australian construction industry, and the failure to use fall protection equipment, such as fall-arrest harnesses and arresting devices, has been found to be a contributing factor. In an attempt to gain an understanding of the issues surrounding the use of fallarrest harness systems by construction workers a study involving semi-structured interviews of 15 male construction workers was carried out at three construction sites. The majority of interviewees commented that there was discomfort in wearing a fall-arrest harness; that there were a number of problems when anchored via an arresting device; and that using a fall-arrest system reduced productivity. Most of the interviewees considered that they needed safety precautions against falls, and they expressed the view that workers’ attitudes towards safety depended critically upon their supervisors’ attitude towards safety. It was also found that workers were not trained in rescue procedures. Interviewees expressed concern that retrieval of a suspended worker may not be carried out in time to prevent the onset of suspension trauma. A number of issues were identified which require further research, such as, investigation into suspension trauma, harness and arresting device design, training provided to workers, and the provision for rescues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different formulations of biodegradable starch-polyester blend nanocomposite materials have been film blown on a pilot scale film blowing tower. The physical properties of different films have been examined by thermal and mechanical analysis and X-ray diffraction. The results show that the addition of an organoclay (from 0 to 5 wt%) significantly improves both the processing and tensile properties over the original starch blends. Wide angle X-ray diffraction (WAXD) results indicate that the best results were obtained for 30wt% starch blends, and the level of delamination depends on the ratio of starch to polyester and amount of organoclay added. The crystallisation temperature of the nanocomposite blends is significantly lower than the base blend. This is probably due to the platelets inhibiting order, and hence crystallisation, of the starch and polyester. The mechanical and thermal properties of the blends are also sensitive to the way the clay particles are dispersed. (C) 2003 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus catalyzes the hydroxylation of xanthine to uric acid with NAD(+) as the electron acceptor. R. capsulatus XDH forms an (alphabeta)(2) heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds; however, R. capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. Here we demonstrate electrocatalytic activity of the recombinant enzyme, expressed in Escherichia coli, while immobilized on an edge plane pyrolytic graphite working electrode. Furthermore, we have determined all redox potentials of the four cofactors (Mo-VI/V, Mo-V/IV, FAD/FADH, FADH/FADH(2) and two distinct [2Fe-2S](2+/+) clusters) using a combination of potentiometric and voltammetric methods. A novel feature identified in catalytic voltammetry of XDH concerns the potential for the onset of catalysis (ca. 400 mV), which is at least 600 mV more positive than that of the highest potential cofactor. This unusual observation is explained on the basis of a pterin-associated oxidative switch during voltammetry that precedes catalysis.