77 resultados para pacs: engineering mathematics and mathematical techniques
Resumo:
The field of environmental engineering is developing as a result of changing environmental requirements. In response, environmental engineering education (E3) needs to ensure that it provides students with the necessary tools to address these challenges. In this paper the current status and future development of E3 is evaluated based on a questionnaire sent to universities and potential employers of E3 graduates. With increasing demands on environmental quality, the complexity of environmental engineering problems to be solved can be expected to increase. To find solutions environmental engineers will need to work in interdisciplinary teams. Based on the questionnaire there was a broad agreement that the best way to prepare students for these future challenges is to provide them with a fundamental education in basic sciences and related engineering fields. Many exciting developments in the environmental engineering profession will be located at the interface between engineering, science, and society. Aspects of all three areas need to be included in E3 and the student needs to be exposed to the tensions associated with linking the three.
Resumo:
Information about the world is often represented in the brain in the form of topographic maps. A paradigm example is the topographic representation of the visual world in the optic tectum/superior colliculus. This map initially forms during neural development using activity-independent molecular cues, most notably some type of chemospecific matching between molecular gradients in the retina and corresponding gradients in the tectum/superior colliculus. Exactly how this process might work has been studied both experimentally and theoretically for several decades. This review discusses the experimental data briefly, and then in more detail the theoretical models proposed. The principal conclusions are that (1) theoretical models have helped clarify several important ideas in the field, (2) earlier models were often more sophisticated than more recent models, and (3) substantial revisions to current modelling approaches are probably required to account for more than isolated subsets of the experimental data.
Resumo:
For second-hand products sold with warranty, the expected warranty cost for an item to the manufacturer, depends on (i) the age and/or usage as well as the maintenance history for the item and (ii) the terms of the warranty policy. The paper develops probabilistic models to compute the expected warranty cost to the manufacturer when the items are sold with free replacement or pro rata warranties. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
It is not surprising that students are unconvinced about the benefits of formal methods if we do not show them how these methods can be integrated with other activities in the software lifecycle. In this paper, we describe an approach to integrating formal specification with more traditional verification and validation techniques in a course that teaches formal specification and specification-based testing. This is accomplished through a series of assignments on a single software component that involves specifying the component in Object-Z, validating that specification using inspection and a specification animation tool, and then testing an implementation of the specification using test cases derived from the formal specification.
Resumo:
Testing concurrent software is difficult due to problems with inherent nondeterminism. In previous work, we have presented a method and tool support for the testing of concurrent Java components. In this paper, we extend that work by presenting and discussing techniques for testing Java thread interrupts and timed waits. Testing thread interrupts is important because every Java component that calls wait must have code dealing with these interrupts. For a component that uses interrupts and timed waits to provide its basic functionality, the ability to test these features is clearly even more important. We discuss the application of the techniques and tool support to one such component, which is a nontrivial implementation of the readers-writers problem.
Resumo:
There has been a greater emphasis over the past few years of encouraging high school students to take up engineering as a career. This is due to a greater need for engineers in society, particularly in areas that are suffering a skills shortage. Both the engineering profession and universities across Australia have moved to address this shortage, with a proliferation of engineering outreach activities and programs the result. The Engineering Link Group (TELG) began the Engineering Link Project (ELP) over a decade ago with a focus on helping motivated high school students make an informed choice about engineering as a career. It also aimed at encouraging more high school students to study maths and science at high school. From the start the ELP was designed so that the students became engineers, rather than just hear from or watch engineers. Real working engineers pose problems to groups of students for them solve over the course of a day. In this way, students experience what it is like to be an engineer. It has been found that the project does help high school students make more informed career choices about engineering. The project also gave the students real life and practical reasons for studying sciences and mathematics at high school. © 2005, Australasian Association for Engineering Education
Resumo:
NASA is working on complex future missions that require cooperation between multiple satellites or rovers. To implement these systems, developers are proposing and using intelligent and autonomous systems. These autonomous missions are new to NASA, and the software development community is just learning to develop such systems. With these new systems, new verification and validation techniques must be used. Current techniques have been developed based on large monolithic systems. These techniques have worked well and reliably, but do not translate to the new autonomous systems that are highly parallel and nondeterministic.