86 resultados para Semantic spaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we compare a well-known semantic spacemodel, Latent Semantic Analysis (LSA) with another model, Hyperspace Analogue to Language (HAL) which is widely used in different area, especially in automatic query refinement. We conduct this comparative analysis to prove our hypothesis that with respect to ability of extracting the lexical information from a corpus of text, LSA is quite similar to HAL. We regard HAL and LSA as black boxes. Through a Pearsonrsquos correlation analysis to the outputs of these two black boxes, we conclude that LSA highly co-relates with HAL and thus there is a justification that LSA and HAL can potentially play a similar role in the area of facilitating automatic query refinement. This paper evaluates LSA in a new application area and contributes an effective way to compare different semantic space models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data are particularly useful in mobile environments. However, due to the low bandwidth of most wireless networks, developing large spatial database applications becomes a challenging process. In this paper, we provide the first attempt to combine two important techniques, multiresolution spatial data structure and semantic caching, towards efficient spatial query processing in mobile environments. Based on the study of the characteristics of multiresolution spatial data (MSD) and multiresolution spatial query, we propose a new semantic caching model called Multiresolution Semantic Caching (MSC) for caching MSD in mobile environments. MSC enriches the traditional three-category query processing in semantic cache to five categories, thus improving the performance in three ways: 1) a reduction in the amount and complexity of the remainder queries; 2) the redundant transmission of spatial data already residing in a cache is avoided; 3) a provision for satisfactory answers before 100% query results have been transmitted to the client side. Our extensive experiments on a very large and complex real spatial database show that MSC outperforms the traditional semantic caching models significantly

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel high-dimensional index method, the BM+-tree, to support efficient processing of similarity search queries in high-dimensional spaces. The main idea of the proposed index is to improve data partitioning efficiency in a high-dimensional space by using a rotary binary hyperplane, which further partitions a subspace and can also take advantage of the twin node concept used in the M+-tree. Compared with the key dimension concept in the M+-tree, the binary hyperplane is more effective in data filtering. High space utilization is achieved by dynamically performing data reallocation between twin nodes. In addition, a post processing step is used after index building to ensure effective filtration. Experimental results using two types of real data sets illustrate a significantly improved filtering efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Client-side caching of spatial data is an important yet very much under investigated issue. Effective caching of vector spatial data has the potential to greatly improve the performance of spatial applications in the Web and wireless environments. In this paper, we study the problem of semantic spatial caching, focusing on effective organization of spatial data and spatial query trimming to take advantage of cached data. Semantic caching for spatial data is a much more complex problem than semantic caching for aspatial data. Several novel ideas are proposed in this paper for spatial applications. A number of typical spatial application scenarios are used to generate spatial query sequences. An extensive experimental performance study is conducted based on these scenarios using real spatial data. We demonstrate a significant performance improvement using our ideas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2002, the authors reviewed the educational performance of a state education department virtual schooling service during its first 2 years of operation, 2000-2001 (Pendergast, Kapitzke, Land, Luke, & Bahr, 2002). Established by Education Queensland, the Virtual Schooling Service (VSS) utilises synchronous and asynchronous online delivery strategies and a range of learning technologies to support students at a distance (see http://education.qld.gov.au/learningplace/vss/). The service commenced with a focus on senior secondary subjects. At present, there are over 700 students in 89 schools across the state enrolled in 9 subjects. In response to the recommendations of the study, a series of professional development activities were conducted with the VSS teachers by the authors. Opportunity for critical reflection was provided, including consideration of the ways in which the teachers were developing as a learning community. Some data, including visual representations, were collected from participants with the purpose of understanding how VSS teachers are constructed as professionals. This study compares and contrasts that data with self-constructions of teacher professionals in other fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.

Relevância:

20.00% 20.00%

Publicador: