85 resultados para Crack closure
Resumo:
In order to understand rock bolt Stress Corrosion Cracking (SCC), a series of experiments have been performed in Linearly Increasing Stress Test (LIST) apparatus. One series of experiments determined the threshold stress of various bolt metallurgies (900 MPa for Steel A, and 800 MPa for Steel B and C). The high values of threshold stress suggest that SCC begins in rock bolts when they are sheared by moving rock strata. Typical crack velocity values have been measured to be 2.5 x 10(-8) m s(-1), indicating that there is not much benefit for rock bolt steel of higher fracture toughness. Another series of experiments were performed to understand the environmental conditions causing SCC of steel A and galvanised Steel A rock bolt steel. SCC only occurred for environmental conditions for which produce hydrogen on the sample surface, leading to hydrogen embrittlement and SCC. Fracture surfaces of LIST samples failed by SCC were found to display the same fracture regions as fracture surfaces of rock bolts failed in service by SCC: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS), quasi Micro Void Coalescence (qMVC) and Fast Fracture Surface (FFS). Water chemistry analysis were carried out on samples collected from various Australian mines in order to compare laboratory electrolyte conditions to those found in underground mines.
Resumo:
Despite extensive research in the last 150 years, the regional tectonic reconstruction of the Western Alps has remained controversial. The curved orogenic belt consists of several ribbon-like continental terranes (Sesia/Austroalpine, Internal Crystalline Massifs, Brianconnais), which are separated by two or more ophiolitic sutures (Piemonte, Valais, Antrona?, Lanzo/ Canavese?). High-pressure (HP) metamorphism of each terrane occurred during distinct orogenic episodes: at similar to65 Ma in the Sesia/Austroalpine, at similar to45 Ma in the Piemonte zone and at similar to35 Ma in the Internal Crystalline Massifs. It is suggested that these events reflect individual accretionary episodes, which together with kinematic indicators and the speed and direction of plate motions, provide constraints for the discussed reconstruction model. The model involves a prolonged orogenic history that took place during relative convergence of Europe and Adria (here considered as a promontory of the African plate). The first accretionary event involved the Sesia/Austroalpine terrane. Final closure of the Piemonte Ocean occurred during the Eocene (similar to45 Ma) and involved ultra-high-pressure (UHP) metamorphism of the Piemonte oceanic crust. Incorporation of the Brianconnais terrane in the accretionary wedge occurred thereafter, possibly during or after subduction of the Valais Ocean in the late Eocene (45-35 Ma). This subduction was terminated at ca. 35 Ma, when the Internal Crystalline Massifs (i.e. the assumed internal parts of the Brianconnais terrane) were buried into great depths and underwent HP and UHP metamorphism. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An experimental white cast iron with the unprecedented fracture tough ness of 40 MPa m(1/2) is currently being studied to determine the mechanisms of toughening. This paper reports the investigation of the role of strain-induced martensitic (SIM) transformation. The dendritic microconstituent in the toughened alloy consists primarily of retained austenite, with precipitated M(7)C(3) carbides and some martensite. Refrigeration experiments and differential scanning calorimetry (DSC) were used to demonstrate, firstly, that this retained austenite has an ''effective'' sub-ambient M(S) temperature and, secondly, that SIM transformation can occur at ambient temperatures. Comparison between room temperature and elevated temperature K-Ic tests showed that the observed SIM produces a transformation toughening response in the alloy, contributing to, but not fully accounting for, its high tough ness. SIM as a mechanism for transformation toughening has not previously been reported for white cast irons. Microhardness traverses on crack paths and X-ray diffraction (XRD) on fracture surfaces confirmed the interpretation of the K-Ic experiments. Further DSC and quantitative XRD showed that, as heat-treatment temperature is varied, there is a correlation between fracture toughness and the volume fraction of unstable retained austenite.
Resumo:
This paper reports on measurements of crack growth by environmental assisted fracture (EAF) for 4340 steel in water and in air at various relative humidities. Of most interest is the observation of slow crack propagation in dry air. Fractographic analysis leads to the strong suggestion that this slow crack propagation is due to hydrogen cracking caused by internal hydrogen in solid solution inside the sample material.
Resumo:
Purpose: To assess the practices in pterygium removal as a follow-up study to a similar project 10 years ago, in order to compare the current trends with those noted a decade ago. Methods: A survey was sent to all practising ophthalmologists in Queensland (100). Results: Eighty-seven of the 100 ophthalmologists undertook pterygium surgery with no change in indications for removal, grading or anaesthesia compared to 10 years ago. Nearly half of the ophthalmologists varied their surgical technique from eight commonly used methods according to the individual patient. More than half the respondents used a swinging conjunctival flap and 29% used simple excision leaving the area bare for primary pterygia, although nearly one-quarter of the ophthalmologists added adjunctive therapies such as beta irradiation or mitomycin. For recurrent pterygia, one-third of ophthalmologists preferred adjunctive therapies, and 57% used an autoconjunctival transplant. Conclusion: There has been no consistent trend in surgical removal of pterygia with a significant number of primary pterygia still removed using bare scleral closure.
Resumo:
After the transition from in utero to newborn life, the neonate becomes solely reliant upon its own drug clearance processes to metabolise xenobiotics. Whilst most studies of neonatal hepatic drug elimination have focussed upon in vitro expression and activities of drug-metabolising enzymes, the rapid physiological changes in the early neonatal period of life also need to be considered. There are dramatic changes in neonatal liver blood how and hepatic oxygenation due to the loss of the umbilical blood supply, the increasing portal vein blood flow, and the gradual closure of the ductus venosus shunt during the first week of life. These changes which may well affect the capacity of neonatal hepatic drug metabolism. The hepatic expression of cytochromes P450 1A2, 2C, 2D6, 2E1 and 3A4 develop at different rates in the postnatal period, whilst 3A7 expression diminishes. Hepatic glucuronidation in the human neonate is relatively immature at birth, which contrasts with the considerably more mature neonatal hepatic sulfation activity. Limited in vivo studies show that the human neonate can significantly metabolise xenobiotics but clearance is considerably less compared with the older infant and adult. The neonatal population included in pharmacological studies is highly heterogeneous with respect to age, body weight, ductus venosus closure and disease processes, making it difficult to interpret data arising from human neonatal studies. Studies in the perfused foetal and neonatal sheep liver have demonstrated how the oxidative and conjugative hepatic elimination of drugs by the intact organ is significantly increased during the first week of life, highlighting that future studies will need to consider the profound physiological changes that may influence neonatal hepatic drug elimination shortly after birth.
Resumo:
Cylindrospermopsis raciborskii produces the cyanotoxin cylindrospermopsin, which is commonly found in SouthEast Queensland water reservoirs, and has been responsible for the closure of these reservoirs as a source of drinking water in recent times. Thus, alternative more effective treatment methods need to be investigated for the removal of toxins such as cylindrospermopsin. This study examined the effectiveness of two brands of titanium dioxide under UV photolysis for the degradation of cylindrospermopsin. Results indicate that titanium dioxide is an efficient photocatalyst for cylindrospermopsin degradation. The titanium dioxide (TiO2), brand Degussa P-25 was found to be more efficient than the alternate brand Hombikat UV-100. There was an influence from solution pH (4, 7, and 9) with both brands of titanium dioxide, with high pH resulting in the best degradation rate. Importantly, there was no adsorption of cylindrospermopsin to titanium dioxide particles as seen with other cyanotoxins, which would adversely influence the degradation rate. Degradation rates were not influenced by temperature (19-34 degreesC) when P-25 was the source of TiO2, some temperature influence was observed with UV-100. Dissolved organic carbon concentration will reduce the efficiency of titanium dioxide for cylindrospermopsin degradation, however the presence of other inorganic matter in natural waters greatly assists the photocatalytic process. With minimal potentially toxic by-product formation expected with this treatment, and the effective degradation of cylindrospermopsin, titanium dioxide UV photolysis is a promising speculative alternative water treatment method. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper theoretical models have been established that can account for the gas transmission through nanocomposite laminates, consisting of an oxide layer of finite permeability containing defects, on a polymer sheet of finite thickness. The defect shapes can either be in the form of long cracks or rectangular holes. The models offer a choice of exact numerical calculations or fast and intuitive analytical approximations. The experimental measurements of oxygen permeation through four different SiOx/poly (ethylene terephthalate) samples that were strained to produce distributions or cracks showed good agreement when compared with predicted results from the approximate analytic model. As a consequence of this observation, a key practical conclusion is that, because of the logarithmic dependence of transmission on the width of a crack, for a given strain it is better to have a small number of large cracks rather than a large number of small cracks. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-rone temperatures (RZTs): a constant 20 degreesC-RZT and a fluctuating ambient (A-) RZT from 23-40 degreesC, Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (g(s)), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio F-v/F-m than 20 degreesC-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although F-v/F-m did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (g(s) (sat)) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure, However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O-2 evolution (P-max), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P-max during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.
Resumo:
This article describes a new test method for the assessment of the severity of environmental stress cracking of biomedical polyurethanes in a manner that minimizes the degree of subjectivity involved. The effect of applied strain and acetone pre-treatment on degradation of Pellethane 2363 80A and Pellethane 2363 55D polyurethanes under in vitro and in vivo conditions is studied. The results are presented using a magnification-weighted image rating system that allows the semi-quantitative rating of degradation based on distribution and severity of surface damage. Devices for applying controlled strain to both flat sheet and tubing samples are described. The new rating system consistently discriminated between. the effects of acetone pre-treatments, strain and exposure times in both in vitro and in vivo experiments. As expected, P80A underwent considerable stress cracking compared with P55D. P80A produced similar stress crack ratings in both in vivo and in vitro experiments, however P55D performed worse under in vitro conditions compared with in vivo. This result indicated that care must be taken when interpreting in vitro results in the absence of in vivo data. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
It is believed that surface instabilities can occur during the extrusion of linear low density polyethylene due to high extensional stresses at the exit of the die. Local crack development can occur at a critical stress level when melt rupture is reached. This high extensional stress results from the rearrangement of the flow at the boundary transition between the wall exit and the free surface. The stress is highest at the extrudate surface and decreases into the bulk of the material. The location of the region where the critical level is reached can determine the amplitude of the extrudate surface distortion, This paper studies the effect of wall slip on the numerically simulated extensional stress level at the die exit and correlates this to the experimentally determined amplitude of the surface instability. The effect of die exit radius and die wall roughness on extrusion surface instabilities is also correlated to the exit stress level in the same way. Whereas full slip may completely suppress the surface instability, a reduction in the exit stress level and instability amplitude is also shown for a rounded die exit and a slight increase in instability is shown to result from a rough die wall. A surface instability map demonstrates how the shear rate for onset of extrusion surface instabilities can be predicted on the basis of melt strength measurements and simulated stress peaks at the exit of the die. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In a prospective study 105 patients with symptoms of stress incontinence underwent video-urodynamic testing, including resting urethral pressure profilometry and translabial ultrasound. The urethral pressure profile (UPP) included maximum urethral closure pressure (MUCP), functional length (FL) and area under the curve (AUC). Ultrasound parameters included urethral thickness, urethral rotation and bladder neck descent, as well as funneling/opening of the internal urethral meatus on Valsalva maneuver. Levator contraction strength was assessed measuring the cranioventral displacement of the internal meatus. Negative correlations between UPP data and age, parity and previous surgery were observed which were consistent with literature data. There was a positive correlation :between the urethral AP diameter on ultrasound and the MUCP, which agrees with reports showing reduced sphincter thickness or volume in stress-incontinent women. Hypermobility on ultrasound did not correlate with UPP data. However, a lower MUCP correlated with extensive opening of the bladder neck. Finally, there was a trend towards poorer pelvic floor function with lower MUCP measurements.
Resumo:
In this paper we use the mixture of topological and measure-theoretic dynamical approaches to consider riddling of invariant sets for some discontinuous maps of compact regions of the plane that preserve two-dimensional Lebesgue measure. We consider maps that are piecewise continuous and with invertible except on a closed zero measure set. We show that riddling is an invariant property that can be used to characterize invariant sets, and prove results that give a non-trivial decomposion of what we call partially riddled invariant sets into smaller invariant sets. For a particular example, a piecewise isometry that arises in signal processing (the overflow oscillation map), we present evidence that the closure of the set of trajectories that accumulate on the discontinuity is fully riddled. This supports a conjecture that there are typically an infinite number of periodic orbits for this system.
Resumo:
Objective: To document the acute characteristics of swallowing impairment in a group of children post moderate/severe traumatic brain injury (TBI) by means of videofluoroscopy. Participants: Eighteen children with moderate/severe TBI. Main Outcome Measure: Videofluoroscopy at an average of 27.7 days post-injury. Results: Subjects demonstrated a range of dysphagia severity levels: mild-moderate (n = 8), moderate (n = 6), moderate-severe (n = 3), and severe (n = 1) and had a combination of oral and pharyngeal phase characteristics. More specifically; observable features or physiological impairments that were identified included reduced lingual control, hesitancy of tongue movement, repetitive tongue pumping, the presence of aspiration (including silent aspiration), delayed swallow reflex trigger, reduced laryngeal elevation and closure, and reduced peristalsis. Conclusions: These data highlight the diversity of swallowing deficits and dysphagia severity levels in children following TBI and suggest that the former are consistent with a pattern of oropharyngeal impairments.
Resumo:
The forging characteristics of an Al-Cu-Mg-Si-Sn alloy are examined using it new testing strategy which incorporates a double truncated cone specimen and finite element modelling. This sample geometry produces controlled strain distributions within a single specimen and can readily identify the specific strain required to achieve a specific microstructural event by matching the metallographic data with the strain profiles calculated from finite element software, The friction conditions were determined using the conventional friction ring test, which was evaluated using finite element software. The rheological properties of the alloy, evaluated from compression testing of right cylinders, are similar to the properties of conventional aluminium forgings. A hoop strain develops at the outer diameter of the truncated cones and this leads to pore opening at the outer few millimetres. The porosity is effectively removed when the total strain equals the net compressive strain. The strain profiles that develop in the truncated cones are largely independent of the processing temperature and the strain rate although the strain required for pore closure increases as the forging temperature is reduced. This suggests that the microstructure and the strain rate sensitivity may also be important factors controlling pore behaviour. (C) 2002 Elsevier Science B.V. All rights reserved.