102 resultados para CYTOSOLIC CA2
Resumo:
Cytosolic sulfotransferases are believed to play a role in the neuromodulation of certain neurotransmitters and drugs. To date, four cytosolic sulfotransferases have been shown to be expressed in human brain. Recently, a novel human brain sulfotransferase has been identified and characterized, although its role and localization in the brain are unknown. Here we present the first immunohistochemical (IHC) localization of SULT4A1 in human brain using an affinity-purified polyclonal antibody raised against recombinant human SULT4A1. These results are supported and supplemented by the IHC localization of SULT4A1 in rat brain. In both human and rat brains, strong reactivity was found in several brain regions, including cerebral cortex, cerebellum, pituitary, and brainstem. Specific signal was entirely absent on sections for which preimmune serum from the corresponding animal, processed in the same way as the postimmune serum, was used in the primary screen. The findings from this study may assist in determining the physiological role of this SULT isoform.
Resumo:
We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life can result in an alteration in spatial learning ability. The hippocampal formation is known to be involved in the control of this ability. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life had either immediate or delayed effects on the numbers of pyramidal cells in the CA1-CA3 subregion of the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol at postnatal day 10-15 by placing them for 3 h/day in a chamber containing ethanol vapor. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anesthetized and killed at 16 and 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle was used to determine the volumes of the CA1 and CA2+CA3 regions. The physical disector method was used to estimate the numerical density of neurons in each of the subdivisions. The total number of pyramidal cells was calculated by multiplying the appropriate estimates of the numerical density by the volume. There were significant age-related reductions in the total numbers of pyramidal cells at 16-30 days of age irrespective of the groups examined. Ethanol treated rats were found to have slightly but significantly fewer pyramidal cell neurons than either the MRC or SC groups. These observations indicate that pyramidal cells in the hippocampus may be vulnerable to a relatively high dose of ethanol exposure during this short period of early postnatal life. (C) 2003 Wiley-Liss, Inc.
Resumo:
A method was developed that allows conversion of changes in maximum Ca2+-dependent fluorescence of a fixed amount of fluo-3 into volume changes of the fluo-3-containing solution. This method was then applied to investigate by confocal microscopy the osmotic properties of the sealed tubular (t-) system of toad and rat mechanically skinned fibers in which a certain amount Of fluo-3 was trapped. When the osmolality of the myoplasmic environment was altered by simple dilution or addition of sucrose within the range 190-638 mosmol kg(-1), the sealed t-system of toad fibers behaved almost like an ideal osmometer, changing its volume inverse proportionally to osmolality However, increasing the osmolality above 638 to 2,550 mosmol kg(-1) caused hardly any change in t-system volume. In myoplasmic solutions made hypotonic to 128 mosmol kg(-1), a loss of Ca2+ from the sealed t-system of toad fibers Occurred, presumably through either stretch-activated cationic channels or store-operated Ca2+ channels. In contrast to the behavior of the t-system in toad fibers, the volume of the sealed t-system of rat fibers changed little (by
Resumo:
1 Chronic treatment of patients with beta-blockers causes atrial inotropic hyperresponsiveness through beta(2)-adrenoceptors, 5-HT4 receptors and H-2-receptors but apparently not through beta(1)-adrenoceptors despite data claiming an increased beta(1)-adrenoceptor density from homogenate binding studies. We have addressed the question of beta(1)-adrenoceptor sensitivity by determining the inotropic potency and intrinsic activity of the beta(1)-adrenoceptor selective partial agonist (-)-RO363 and by carrying out both homogenate binding and quantitative beta-adrenoceptor autoradiography in atria obtained from patients treated or not treated with beta-blockers. In the course of the experiments it became apparent that (-)-RO363 also may cause agonistic effects through the third atrial beta-adrenoceptor. To assess whether (-)-RO363 also caused agonistic effects through beta(3)-adrenoceptors we studied its relaxant effects in rat colon and guinea-pig ileum, as well as receptor binding and adenylyl cyclase stimulation of chinese hamster ovary (CHO) cells expressing human beta(3)-adrenoceptors. 2 beta-Adrenoceptors were labelled with (-)-[I-125]-cyanopindolol. The density of both beta(1)- and beta(2)-adrenoceptors was unchanged in the 2 groups, as assessed with both quantitative receptor autoradiography and homogenate binding. The affinities of (-)-RO363 for beta(1)-adrenoceptors (pK(i) = 8.0-7.7) and beta(2)-adrenoceptors (pK(i) = 6.1-5.8) were not significantly different in the two groups. 3 (-)-RO363 increased atrial force with a pEC(50) of 8.2 (beta-blocker treated) and 8.0 (non-beta-blocker treated) and intrinsic activity with respect to (-)-isoprenaline of 0.80 (beta-blocker treated) and 0.54 (non-beta-blocker treated) (P<0.001) and with respect to Ca2+ (7 mM) of 0.65 (beta-blocker treated) and 0.45 (non-beta-blocker treated) (P<0.01). The effects of (-)-RO363 were resistant to antagonism by the beta(2)-adrenoceptor antagonist, ICI 118,551 (50 nM). The effects of 0.3-10 nM (-)-RO363 were antagonized by 3-10 nM of the beta(1)-adrenoceptor selective antagonist CGP 20712A. The effects of 20-1000 nM (-)-RO363 were partially resistant to antagonism by 30-300 nM CGP 20712A. 4 (-)-RO363 relaxed the rat colon, partially precontracted by 30 mM KCl, with an intrinsic activity of 0.97 compared to (-)-isoprenaline. The concentration-effect curve to (-)-RO363 revealed 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.5 and fraction 0.66, the other resistant to (-)-propranolol (200 nM) with pEC(50)=5.6 and fraction 0.34 of maximal relaxation. 5 (-)-RO363 relaxed the longitudinal muscle of guinea-pig ileum, precontracted by 0.5 mu M histamine, with intrinsic activity of 1.0 compared to (-)-isoprenaline and through 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.7 and fraction 0.67, the other resistant to (-)-propranolol with pEC(50)=4.9 and fraction 0.33 of maximal relaxation. 6 (-)-RO363 stimulated the adenylyl cyclase of CHO cells expressing human beta(3)-adrenoceptors with pEC(50)=5.5 and intrinsic activity 0.74 with respect to (-)-isoprenaline (pEC(50)=5.9). (-)-RO363 competed for binding with [I-125]cyanopindolol at human beta(3)-adrenoceptors transfected into CHO cells with pK(i)=4.5. (-)-Isoprenaline (pk(i)=5.2) and (-)-CGP 12177A (pK(i)=6.1) also competed for binding at human beta(2)-adrenoceptors. 7 We conclude that under conditions used in this study, (-)-RO363 is a potent partial agonist for human beta(1)- and beta(3)-adrenoceptors and appears also to activate the third human atrial beta-adrenoceptor. (-)-RO363 relaxes mammalian gut through both beta(1)- and beta(3)-adrenoceptors. (-)-RO363, used as a beta(1)-adrenoceptor selective tool, confirms previous findings with (-)-noradrenaline that beta(1)-adrenoceptor mediated atrial effects are only slightly enhanced by chronic treatment of patients with beta-blockers. Chronic treatment with beta(1)-adrenoceptor-selective blockers does not significantly increase the density of human atrial beta(1)- and beta(2)-adrenoceptors.
Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy
Resumo:
Conantokin-G and conantokin-T are two paralytic polypeptide toxins originally isolated from the venom of the fish-hunting cone snails of the genus Conus. Conantokin-G and conantokin-T are the only naturally occurring peptidic compounds which possess N-methyl-D-aspartate receptor antagonist activity, produced by a selective non-competitive antagonism of polyamine responses, They are also structurally unusual in that they contain a disproportionately large number of acid labile post-translational gamma-carboxyglutamic acid (Gla) residues, Although no precise structural information has previously been published for these peptides, early spectroscopic measurements have indicated that both conantokin-G and conantokin-T form alpha-helical structures, although there is some debate whether the presence of calcium ions is required for these peptides to adopt this fold, We now report a detailed structural study of synthetic conantokin-G and conantokin-T in a range of solution conditions using CD and H-1 NMR spec troscopy. The three-dimensional structures of conantokin-T and conantokin-G were calculated from H-1 NMR-derived distance and dihedral restraints. Both conantokins were found to contain a mixture of alpha- and 3(10) helix, that give rise to curved and straight helical conformers. Conantokin-G requires the presence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+) to form a stable iv-helix, while conantokin-T adopts a stable alpha-helical structure in aqueous conditions, in the presence or absence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+).
Resumo:
Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of similar to 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV, Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of similar to 115 pS and depolarization of similar to 32 mV, All these results are consistent with cAMP-gated cation channels dominating the odorant response, This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.
Resumo:
Closantel is an anthe lmintic which associates with plasma albumin and is useful for the control of sheep parasites, such as Haemonchus contortus, that ingest blood. However, the utility of closantel for parasite control has been threatened by the emergence of resistance. The mechanisms of resistance are unknown. A closantel-resistant and a closantel-susceptible isolate of H. contortus were compared with respect to the distribution and metabolism of closantel. Neither strain appeared to metabolise closantel in vitro or in vivo. Following treatment of infected sheep with radioactively labelled closantel, isotope levels in closantel-resistant adult H. contortus were significantly lower than in susceptible worms. This reduced accumulation of drug could contribute to closantel resistance by mechanisms such as reduced feeding, failure to dissociate the drug-albumin complex in the gut or increased efflux of closantel from resistant worms. (C) 1997 Australian Society for Parasitology.
Resumo:
Although vasoactive intestinal polypeptide (VIP) is thought to be a prolactin releasing factor, in vivo studies on sheep suggest that it is inactive in this species. Recent studies, based primarily on the rat, suggest that the related pituitary adenylate cyclase-activating polypeptide (PACAP) is also a hypophysiotrophic factor but again in sheep, this peptide has no in vivo effects on hormone secretion despite being a potent activator of adenylate cyclase in vitro. This lack of response to either peptide in vivo in sheep could be due to the low concentration of peptide that reaches the pituitary gland following peripheral injection. In the present study we therefore adopted an alternative approach of evaluating in vitro effects of these peptides on GH, FSH, LH or prolactin secretion from dispersed sheep pituitary cells. In a time-course study, PACAP (1 mu mol/l) increased GH concentrations in the culture medium between 1 and 4 h and again at 12 h but had no effect in the 6 and 24 h incubations. Prolactin, LH and FSH were not affected by PACAP. The response to various concentrations of PACAP (1 nmol/l-1 mu mol/l) were then evaluated using a 3 h incubation. Again prolactin and LH were not affected by PACAP and there was a small increase in GH concentrations but only at high concentrations of PACAP (0.1 and 1 mu mol/l; P<0.05), PACAP also stimulated FSH secretion in cells from some animals although this effect was small, The GH response to PACAP was inhibited by PACAP(6-38), a putative PACAP antagonist; but not by (N-Ac-Tyr(1), D-Arg(2))-GHRH(1-29)-NH2, a GH-releasing hormone (GHRH) antagonist. The cAMP antagonist Rp-cAMPS was unable to block the GH response to PACAP suggesting that cAMP does not mediate the secretory response to this peptide. At incubation times from 1-24 h, VIP (1 mu mol/l) had no effects on prolactin, LH or GH secretion and, in a further experiment based on a 3 h incubation, concentrations of VIP from 1 nmol/l-1 mu mol/l were again without effect on prolactin concentrations. Interactions between PACAP and gonadotrophin releasing hormone (GnRH), GHRH and dopamine were also investigated. PACAP (1 nmol/l-1 mu mol/l) did not affect the gonadotrophin or prolactin responses to GnRH or dopamine respectively. However, at a high concentration (1 mu mol/l), PACAP inhibited the GH response to GHRH. In summary, these results show that PACAP causes a modest increase in FSH and GH secretion from sheep pituitary cells but only at concentrations of PACAP that are unlikely to be in the physiological range. The present study confirms that VIP is not a prolactin releasing factor in sheep.
Resumo:
Epidemiologic studies have suggested that aromatic amines (and nitroaromatic hydrocarbons) may be carcinogenic for human pancreas, Pancreatic tissues from 29 organ donors (13 smokers, 16 non-smokers) were examined for their ability to metabolize aromatic amines and other carcinogens, Microsomes showed no activity for cytochrome P450 (P450) 1A2-dependent N-oxidation of 4-aminobiphenyl (ABP) or for the following activities (and associated P450s): aminopyrine N-demethylation and ethylmorphine N-demethylation (P450 3A4); ethoxyresorufin O-deethylation (P450 1A1) and pentoxyresorufin O-dealkylation (P450 2B6); p-nitrophenol hydroxylation and N-nitrosodimethylamine N-demethylation (P450 2E1); lauric acid omega-hydroxylation (P450 4A1); and 4-(methylnitrosamino)-1-(3-pyridyl-1-butanol) (NNAL) and 4-(methylnitrosamino)1-(3-pyridyl)-1-butanone (NNK) alpha-oxidation (P450 1A2, 2A6, 2D6). Antibodies were used to examine microsomal levels of P450 1A2, 2A6, 2C8/9/18/19, 2E1, 2D6, and 3A3/ 4/5/7 and epoxide hydrolase. Immunoblots detected only epoxide hydrolase at low levels; P450 levels were <1% of liver. Microsomal benzidine/prostaglandin hydroperoxidation activity was low. In pancreatic cytosols and microsomes, 4-nitrobiphenyl reductase activities were present at levels comparable to human liver. The O-acetyltransferase activity (AcCoA-dependent DNA-binding of [H-3]N-hydroxy-ABP) of pancreatic cytosols was high, about two-thirds the levels measured in human colon. Cytosols showed high activity for N-acetylation of p-aminobenzoic acid, but not of sulfamethazine, indicating that acetyltransferase-1 (NAT1) is predominantly expressed in this tissue. Cytosolic sulfotransferase was detected at low levels. Using P-32-post-labeling enhanced by butanol extraction, putative arylamine-DNA adducts were detected in most samples. Moreover, in eight of 29 DNA samples, a major adduct was observed that was chromatographically identical to the predominant ABP-DNA adduct, N-(deoxyguanosin-8-yl)-ABP. These results are consistent with a hypothesis that aromatic amines and nitroaromatic hydrocarbons may be involved in the etiology of human pancreatic cancer.
Resumo:
The regulation of putrescine transport in difluoromethylornithine-treated B16 melanoma cells by extracellular Ca2+ has been investigated. It was found that physiological concentrations of Ca2+ were essential for optimum uptake of putrescine and spermidine. Mg2+, albeit at higher concentrations, also could potentiate polyamine transport. The maximum rate of putrescine uptake increased from 1698 +/-: 67 pmol/min/mg DNA in the absence of Ca2+ to 3100 +/- 98 pmol/min/mg DNA in the presence of 0.5 mM Ca2+. There was no change in K-m. While Ca2+ enhanced transport of both putrescine and spermidine it did not affect the uptake of deoxyglucose, thymidine or leucine. Putrescine did not alter Ca2+ fluxes suggesting that the two cations do not share a common transport system. The effects of Ca2+ on putrescine uptake appeared to be mediated extracellularly firstly because Ca2+ did not potentiate putrescine uptake in the presence of A23187 and secondly, because the effects of Ca2+ were completely inhibited by the lanthanide Tb3+, which binds to calcium-dependent proteins and does not readily cross biological membranes. Ca2+ did not affect putrescine transport in the absence of extracellular Na+. Moreover, the rate of putrescine uptake in the absence of Ca2+ was similar to that in the absence of extracellular Na+. The results from this study indicate that polyamine transport is stimulated by extracellular Ca2+ and suggest that Ca2+ is required for activity of the Na+-dependent transporter only. This transporter appears to possess a regulatory binding site for divalent cations. (C) 1997 Elsevier Science Ltd.
Resumo:
1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 mu g ml(-1) saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min(-1). Saponin concentrations up to 150 mu g ml(-1) and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 mu g ml(-1) saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 mu g ml(-1) for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min(-1) in the presence of 150 mu g ml(-1) saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 mu M Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 mu m) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 mu g ml(-1) saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species dependent manner, probably by increasing the Ca2+ loss through SR Ca2+ release channels.
Resumo:
Background. The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X-L, pro-apoptotic Bax and Bad), Methods. Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) Or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (West ern immunoblots, densitometry, immunoelectron microscopy). Results. Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X-L and Bax, but not Bcl-2 or Bad, was identified in control distal cells, Bcl-X-L and Bax had nonsignificant increases (P > 0.05) in these cells. Bcl-2, Bax, and Bcl-X-L, but not Bad, were endogenously expressed in control proximal cells. Bcl-X-L was significantly decreased in treated proximal cultures (P < 0.05), with Bas and Bcl-2 having nonsignificant increases (P > 0.05). Immunoelectron microscopy localization indicated that control and treated hut surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X-L from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-XL expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. Conclusion. The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X-L in proximal cells, as well as translocation of Bcl-X-L protein to mitochondria within the surviving distal cells.
Resumo:
Pulmonary vascular remodeling is an important pathological feature of pulmonary hypertension, leading to increased pulmonary vascular resistance and reduced compliance. It involves thickening of all three layers of the blood vessel wall (due to hypertrophy and/or hyperplasia of the predominant cell type within each layer), as well as extracellular matrix deposition. Neomuscularisation of non-muscular arteries and formation of plexiform and neointimal lesions also occur. Stimuli responsible for remodeling involve transmural pressure, stretch, shear stress, hypoxia, various mediators [angiotensin II, endothelin (ET)-1, 5-hydroxytryptamine, growth factors, and inflammatory cytokines], increased serine elastase activity, and tenascin-C. In addition, there are reductions in the endothelium-derived antimitogenic substances, nitric oxide, and prostacyclin. Intracellular signalling mechanisms involved in pulmonary vascular remodeling include elevations in intracellular Ca2+ and activation of the phosphatidylinositol pathway, protein kinase C, and mitogen-activated protein kinase. In animal models of pulmonary hypertension, various drugs have been shown to attenuate pulmonary vascular remodeling. These include angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, ET receptor antagonists, ET-converting enzyme inhibitors, nitric oxide, phosphodiesterase 5 inhibitors, prostacyclin, Ca2+-channel antagonists, heparin, and serine elastase inhibitors. Inhibition of remodeling is generally accompanied by reductions in pulmonary artery pressure. The efficacy of some of the drugs varies, depending on the animal model of the disease. In view of the complexity of the remodeling process and the diverse aetiology of pulmonary hypertension in humans, it is to be anticipated that successful anti-remodeling therapy in the clinic will require a range of different drug options. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
This study investigated whether pulmonary Vascular remodelling in hypoxic pulmonary hypertensive rats (10% oxygen; 4 weeks) could be prevented by treatment, during hypoxia, with amlodipine (IO mg/kg/day, p.o.), either alone or in combination with the angiotensin converting enzyme inhibitor, perindopril (30 mg/kg/day, p.o.). Medial thickening of pulmonary arteries (30-500 mum o.d.) was attenuated by amlodipine whereas it was totally prevented by the combination treatment (amlodipine plus perindopril); neomuscularisation of small alveolar arteries (assessed from critical closing pressure in isolated perfused lungs) was not affected. Pulmonary vascular resistance (isolated perfused lungs) was reduced by both treatment regimes but only combination treatment reduced right ventricular hypertrophy. Taus, amlodipine has anti-remodelling properties in pulmonary hypertensive rats. The finding that combining amlodipine with another anti-remodelling drug produced effects on vascular structure that were additive raises the question of whether combination therapy with two different anti-remodelling drugs may be of value in the treatment of patients with hypoxic (and possibly other forms of) pulmonary hypertension. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
KCNQ1 (K(V)LQT1) K+ channels play an important role during electrolyte secretion in airways and colon. KCNQ1 was cloned recently from NaCl-secreting shark rectal glands. Here we study. the properties and regulation of the cloned sK(V)LQT1 expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells and compare the results with those obtained from in vitro perfused rectal gland tubules (RGT). The expression of sKCNQ1 induced voltage-dependent, delayed activated K+ currents, which were augmented by an increase in intracellular cAMP and Ca2+. The chromanol derivatives 293B and 526B potently inhibited sKCNQ1 expressed in oocytes and CHO cells, but had little effect on RGT electrolyte transport. Short-circuit currents in RGT were activated by alkalinization and were decreased by acidification. In CHO cells an alkaline pH activated and an acidic pH inhibited 293B-sensitive KCNQ1 currents. Noise analysis of the cell-attached basolateral membrane of RGT indicated the presence of low-conductance (