111 resultados para AMYGDALA REACTIVITY
Resumo:
Catalytic reforming of methane with carbon dioxide was studied in a fixed-bed reactor using unpromoted and promoted Ni/gamma-Al2O3 catalysts. The effects of promoters, such as alkali metal oxide (Na2O), alkaline-earth metal oxides (MgO, CaO) and rare-earth metal oxides (La2O3, CeO2), on the catalytic activity and stability in terms of coking resistance and coke reactivity were systematically examined. CaO-, La2O3- and CeO2-promoted Ni/gamma-Al2O3 catalysts exhibited higher stability whereas MgO- and Na2O-promoted catalysts demonstrated lower activity and significant deactivation. Metal-oxide promoters (Na2O, MgO, La2O3, and CeO2) suppressed the carbon deposition, primarily due to the enhanced basicities of the supports and highly reactive carbon species formed during the reaction. In contrast, CaO increased the carbon deposition; however, it promoted the carbon reactivity. (C) 2000 Society of Chemical Industry.
Resumo:
X-Ray crystal structures, C-13 NMR spectra and theoretical calculations (B3LYP/6-31G*) are reported for the mesoionic (zwitterionic) pyridopyrimidinylium- and pyridooxazinyliumolates 2a, 3a and 5a,b as well as the enol ether 11b and the enamine 11c. The 1-NH compounds like 1a, 2a and 3a exist in the mesoionic form in the crystal and in solution, but the OH tautomers such as 1b and 2b dominate in the gas phase as revealed by the Ar matrix IR spectra in conjunction with DFT calculations. All data indicate that the mesoionic compounds can be regarded as intramolecular pyridine-ketene zwitterions (cf. 16 --> 17) with a high degree of positive charge on the pyridinium nitrogen, a long pyridinium N-CO bond (ca. 1.44-1.49 Angstrom), and normal C=O double bonds (ca. 1.22 Angstrom). All mesoionic compounds exhibit a pronounced tilting of the olate C=O groups (the C=O groups formally derived from a ketene) towards the pyridinium nitrogen, giving NCO angles of 110-118 degrees. Calculations reveal a hydrogen bond with 6-CH, analogous to what is found in ketene-pyridine zwitterions and the C3O2-pyridine complex. The 2-OH tautomers of type 1b, 2b, and 11 also show a high degree of zwitterionic character as indicated by the canonical structures 11 12.
Resumo:
The reactivity of sera from patients with cervical cancer with the E7 protein of human papilloma virus type 16 (HPV16) was estimated using a novel non-radioactive immunoprecipitation assay and four established protein-and peptide-based immunoassays. Six of 14 sera from patients with cervical cancer and 1 of 10 sera from healthy laboratory staff showed repeated reactivity with E7 in at least one assay. Four of the 7 reactive sera were consistently reactive in more than one assay, but only one was reactive in all four assays. Following immunization with E7, 2 of 5 patients with cervical cancer had increased E7-specific reactivity, measurable in one or more assays. No single assay was particularly sensitive for E7 reactivity, or predictive of cervical cancer. Mapping of E7 reactivity to specific E7 peptides was unsuccessful, suggesting that natural or induced E7 reactivity in human serum is commonly directed to conformational epitopes of E7, These results suggest that each assay employed with is study measures a different aspect of E7 reactivity, and that various reactivities to E7 may manifest following HPV infection or immunization. This finding is of significance for monitoring of E7 immunotherapy and for serological screening for cervical cancer. Copyright (C) 2000 S.Karger, AG. Basel.
Resumo:
The substitution reactions of SMe2 by phosphines (PMePh2, PEtPh2, PPh3, P(4-MeC6H4)(3), P(3-MeC6H4)(3), PCy3) on Pt-IV complexes having a cyclometalated imine ligand, two methyl groups in a cis-geometrical arrangement, a halogen, and a dimethyl sulfide as ligands, [Pt(CN)(CH3)(2)(X)(SMe2)], have been studied as a function of temperature, solvent, and electronic and steric characteristics of the phosphines and the X and CN ligands. In all cases, a limiting dissociative mechanism has been found, where the dissociation of the SMe2 ligand corresponds to the rate-determining step. The pentacoordinated species formed behaves as a true pentacoordinated Pt-IV compound in a steady-state concentration, given the solvent independence of the rate constant. The X-ray crystal structures of two of the dimethyl sulfide complexes and a derivative of the pentacoordinate intermediate have been determined. Differences in the individual rate constants for the entrance of the phosphine ligand can only be estimated as reactivity ratios. In all cases an effect of the phosphine size is detected, indicating that an associative step takes place from the pentacoordinated intermediate. The nature of the (CN) imine and X ligands produces differences in the dimethyl sulfide dissociation reactions rates, which can be quantified by the corresponding DeltaS double dagger values (72, 64, 48, 31, and 78 J K-1 mol(-1) for CN/X being C6H4CHNCH2C6H5/Br, C6H4CHNCH2-(2,4,6-(CH3)(3))C6H2/Br, C6H4CHNCH2C6H5/Cl, C6Cl4CHNCH2C6H5/Cl, and C6W4CH2NCHC6H5/ Pr, respectively). As a whole, the donor character of the coordinated C-aromatic and X atoms have the greatest influence on the dissociativeness of the rate-determining step.
Resumo:
Dendritic cells (DC) are rare, bone marrow-derived antigen-presenting cells that play a critical role in the induction and regulation of immune reactivity. In this article, we review the identification and characterization of liver DC, their ontogenic development, in vivo mobilization and population dynamics. In addition, we discuss the functions of DC isolated from liver tissue or celiac lymph, or propagated in vitro from liver-resident haemopoietic stem/progenitor cells. Evidence concerning the role of DC in viral hepatitis. liver tumours, autoimmune liver diseases, granulomatous inflammation and the outcome of liver transplantation is also discussed.
Resumo:
A converging body of literature over the last 50 years has implicated the amygdala in assigning emotional significance or value to sensory information. In particular, the amygdala has been shown to be an essential component of the circuitry underlying fear-related responses. Disorders in the processing of fear-related information are likely to be the underlying cause of some anxiety disorders in humans such as posttraumatic stress. The amygdaloid complex is a group of more than 10 nuclei that are located in the midtemporal lobe. These nuclei can be distinguished both on cytoarchitectonic and connectional grounds. Anatomical tract tracing studies have shown that these nuclei have extensive intranuclear and internuclear connections. The afferent and efferent connections of the amygdala have also been mapped in detail, showing that the amygdaloid complex has extensive connections with cortical and subcortical regions. Analysis of fear conditioning in rats has suggested that long-term synaptic plasticity of inputs to the amygdala underlies the acquisition and perhaps storage of the fear memory. In agreement with this proposal, synaptic plasticity has been demonstrated at synapses in the amygdala in both in vitro and in vivo studies. In this review, we examine the anatomical and physiological substrates proposed to underlie amygdala function.
Resumo:
The synthesis of the hexadentate ligand 2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (EtN(4)S(2)amp) is reported. The ligand is of a type in which bifurcations of the chain occur at atoms other than donor atoms. The cobalt(III) complex [Co(EtN(4)S(2)amp)](3+) (1) was isolated and characterized. The synthetic methodology also results in a number of by-products, notably 2,9,9-tris(methyleneamine)-9-methylenehydroxy-4,7-dithiadecane (Et(HO)N(3)S(2)amp) and an eleven-membered pendant arm macrocyclic ligand 6,10-dimethyl-6,10-bis(methyleneamine)-1,4-dithia-8-azaacycloundec-7- ene (dmatue). The complexes [Co(Et(HO)N(3)S(2)amp)](3+) (2), in which the alcohol is coordinated to the metal ion, and [Co(dmatue)Cl](2+) (4) were isolated and characterized. Et(HO)N(3)S(2)amp also undergoes complexation with cobalt(III) to produce two isomers endo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (endo-3) and exo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (exo-3), both with an uncoordinated alcohol group. endo- 3 has the alcohol positioned cis, and exo-3 trans, to the sixth metal coordination site. Reaction of 1 with isobutyraldehyde, paraformaldehyde and base in dimethylformamide results in the encapsulated complex [Co(1,5,5,9,13,13-hexamethyl-18,21-dithia-3,7,11,15-tetraazabicyclo[7.7.6]docosa- 3,14-diene)](ClO4)(3) . 2H(2)O ([Co(Me(6)docosadieneN(4)S(2))](3+) ( 5). All complexes have been characterized by single crystal X-ray study. The low-temperature (11 K) absorption spectrum of 1 has been measured in Nafion films with spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(1g) and (1)A(1g) --> T-3(2g) bands observed. The octahedral ligand-field parameters were determined (10Dq = 22570 cm(-1), B = 551 cm(-1); C = 3500 cm(-1)). For 5 10Dq and B were determined (20580 cm(-1); 516 cm(-1), respectively) and compared with those for similar expanded cavity complexes [Co(Me(8)tricosatrieneN(6))](3+) and [Co(Me(5)tricosatrieneN(6))](3+).
Resumo:
Allergy is a major cause of morbidity worldwide. The number of characterized allergens and related information is increasing rapidly creating demands for advanced information storage, retrieval and analysis. Bioinformatics provides useful tools for analysing allergens and these are complementary to traditional laboratory techniques for the study of allergens. Specific applications include structural analysis of allergens, identification of B- and T-cell epitopes, assessment of allergenicity and cross-reactivity, and genome analysis. In this paper, the most important bioinformatic tools and methods with relevance to the study of allergy have been reviewed.
Resumo:
Cytosolic sulfotransferases are believed to play a role in the neuromodulation of certain neurotransmitters and drugs. To date, four cytosolic sulfotransferases have been shown to be expressed in human brain. Recently, a novel human brain sulfotransferase has been identified and characterized, although its role and localization in the brain are unknown. Here we present the first immunohistochemical (IHC) localization of SULT4A1 in human brain using an affinity-purified polyclonal antibody raised against recombinant human SULT4A1. These results are supported and supplemented by the IHC localization of SULT4A1 in rat brain. In both human and rat brains, strong reactivity was found in several brain regions, including cerebral cortex, cerebellum, pituitary, and brainstem. Specific signal was entirely absent on sections for which preimmune serum from the corresponding animal, processed in the same way as the postimmune serum, was used in the primary screen. The findings from this study may assist in determining the physiological role of this SULT isoform.
Resumo:
Novel cyclopropyl containing fatty acids are good substrates for P450(BM3) catalysed hydroxylation and analysis of their oxidation products indicates the presence of a radical intermediate (maximum rebound rate 2.6x10(10) s(-1)) and the absence of any cationic intermediate.
Resumo:
Because CD4(+) T cells play a key role in aiding cellular immune responses, we wanted to assess whether increasing numbers of gene-engineered antigen-restricted CD4(+) T cells could enhance an antitumor response mediated by similarly gene-engineered CD8(+) T cells. In this study, we have used retroviral transduction to generate erbB2-reactive mouse T-cell populations composed of various proportions of CD4(+) and CD8(+) cells and then determined the antitumor reactivity of these mixtures. Gene-modified CD4(+) and CD8(+) T cells were shown to specifically secrete Tc1 (T cytotoxic-1) or Tc2 cytokines, proliferate, and lyse erbB2(+) tumor targets following antigen ligation in vitro. In adoptive transfer experiments using severe combined immunodeficient (scid) mice, we demonstrated that injection of equivalent numbers of antigen-specific engineered CD8(+) and CD4(+) T cells led to significant improvement in survival of mice bearing established lung metastases compared with transfer of unfractionated (largely CD8(+)) engineered T cells. Transferred CD4(+) T cells had to be antigen-specific (not just activated) and secrete interferon gamma (IFN-gamma) to potentiate the antitumor effect. Importantly, antitumor responses in these mice correlated with localization and persistence of gene-engineered T cells at the tumor site. Strikingly, mice that survived primary tumor challenge could reject a subsequent re-challenge. Overall, this study has highlighted the therapeutic potential of using combined transfer of antigen-specific gene-modified CD8(+) and CD4(+) T cells to significantly enhance T-cell adoptive transfer strategies for cancer therapy.
Resumo:
The syntheses and characterisation of the new macrocyclic hexaamine trans-(5(S),7(S),12(R),14(R)-tetramethyl)-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L-6) and its Co-III complex are reported. The X-ray crystal structural analyses of [CoL6]Cl-2(ClO4) [monoclinic, space group C2/c, a = 16.468(3) Angstrom, b = 9.7156(7) Angstrom, c = 15.070(3) Angstrom, beta = 119.431(8)degrees, Z = 4] and the closely related cis-diamino-substituted macrocyclic complex [CoL2](ClO4)(3) . 2H(2)O (L-2 = cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) [orthorhombic, space group Pna2(1), a = 16.8220(8) Angstrom, b = 10.416(2) Angstrom, c = 14.219(3) Angstrom, Z = 4] reveal significant variations in the observed Co-N bond lengths and coordination geometries, which may be attributed to the trans or cis disposition of the pendent primary amines. The Co-III/II self-exchange electron transfer rate constants for these and other closely related hexaamines have been determined, and variations of some 2 orders of magnitude are found between pairs of trans and cis isomeric Co-III complexes.
Resumo:
The reactions between novolac resins and hexamethylenetetramine (HMTA) which occur on curing have been studied by C-13 and N-15 high-resolution n.m.r. in both solution and the solid state. Strong evidence for the existence of many curing intermediates is obtained. New curing intermediates are reported along with experimental data to support previously postulated intermediates. The initial curing reactions between novolac and HMTA produce various substituted benzoxazines and benzylamines. Thermal decomposition/oxidation and further reactions of these initial intermediates generate methylene linkages between phenolic rings for chain extension and cross-linking. Among the three kinds of methylene linkages, the para-para methylene linkages are formed at relatively lower temperatures. Various imine, amide and imide side-products also concurrently appear during the process. The initial amount of HMTA plays a critical role in the curing reactivity and chemical structures of the cured resins. The lower the amount of HMTA, the lower the temperature at which curing occurs, and the lower the amount of the nitrogen-containing side-products in the finally cured resins. The ortho-linked intermediates are relatively stable, and can remain in the cured resins up to higher temperatures. The study provides an extensive description of the curing reactions of novolac resins. (C) 1997 Elsevier Science Ltd.