993 resultados para H190 General Engineering not elsewhere classified
Resumo:
To promote the range of interventions for building family/general practice (family medicine) research capacity, we describe successful international examples. Such examples of interventions that build research capacity focus on diseases and illness research, as well as process research; monitor the output of research in family/general practice (family medicine); increase the number of family medicine research journals; encourage and enable research skills acquisition (including making it part of professional training); strengthen the academic base; and promote research networks and collaborations. The responsibility for these interventions lies with the government, colleges and academies, and universities. There are exciting and varied methods of building research capacity in family medicine.
Resumo:
The field of environmental engineering is developing as a result of changing environmental requirements. In response, environmental engineering education (E3) needs to ensure that it provides students with the necessary tools to address these challenges. In this paper the current status and future development of E3 is evaluated based on a questionnaire sent to universities and potential employers of E3 graduates. With increasing demands on environmental quality, the complexity of environmental engineering problems to be solved can be expected to increase. To find solutions environmental engineers will need to work in interdisciplinary teams. Based on the questionnaire there was a broad agreement that the best way to prepare students for these future challenges is to provide them with a fundamental education in basic sciences and related engineering fields. Many exciting developments in the environmental engineering profession will be located at the interface between engineering, science, and society. Aspects of all three areas need to be included in E3 and the student needs to be exposed to the tensions associated with linking the three.
Resumo:
The Virtual Learning Environment (VLE) is one of the fastest growing areas in educational technology research and development. In order to achieve learning effectiveness, ideal VLEs should be able to identify learning needs and customize solutions, with or without an instructor to supplement instruction. They are called Personalized VLEs (PVLEs). In order to achieve PVLEs success, comprehensive conceptual models corresponding to PVLEs are essential. Such conceptual modeling development is important because it facilitates early detection and correction of system development errors. Therefore, in order to capture the PVLEs knowledge explicitly, this paper focuses on the development of conceptual models for PVLEs, including models of knowledge primitives in terms of learner, curriculum, and situational models, models of VLEs in general pedagogical bases, and particularly, the definition of the ontology of PVLEs on the constructivist pedagogical principle. Based on those comprehensive conceptual models, a prototyped multiagent-based PVLE has been implemented. A field experiment was conducted to investigate the learning achievements by comparing personalized and non-personalized systems. The result indicates that the PVLE we developed under our comprehensive ontology successfully provides significant learning achievements. These comprehensive models also provide a solid knowledge representation framework for PVLEs development practice, guiding the analysis, design, and development of PVLEs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study explores whether the introduction of selectively trained radiographers reporting Accident and Emergency (A&E) X-ray examinations or the appendicular skeleton affected the availability of reports for A&E and General Practitioner (GP) examinations at it typical district general hospital. This was achieved by analysing monthly data on A&E and GP examinations for 1993 1997 using structural time-series models. Parameters to capture stochastic seasonal effects and stochastic time trends were included ill the models. The main outcome measures were changes in the number, proportion and timeliness of A&E and GP examinations reported. Radiographer reporting X-ray examinations requested by A&E was associated with it 12% (p = 0.050) increase in the number of A&E examinations reported and it 37% (p
Resumo:
This paper describes an ongoing collaboration between Boeing Australia Limited and the University of Queensland to develop and deliver an introductory course on software engineering. The aims of the course are to provide a common understanding of the nature of software engineering for all Boeing Australia's engineering staff, and to ensure they understand the practices used throughout the company. The course is designed so that it can be presented to people with varying backgrounds, such as recent software engineering graduates, systems engineers, quality assurance personnel, etc. The paper describes the structure and content of the course, and the evaluation techniques used to collect feedback from the participants and the corresponding results. The immediate feedback on the course indicates that it has been well received by the participants, but also indicates a need for more advanced courses in specific areas. The long-term feedback from participants is less positive, and the long-term feedback from the managers of the course participants indicates a need to expand on the coverage of the Boeing-specific processes and methods. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The research literature on metalieuristic and evolutionary computation has proposed a large number of algorithms for the solution of challenging real-world optimization problems. It is often not possible to study theoretically the performance of these algorithms unless significant assumptions are made on either the algorithm itself or the problems to which it is applied, or both. As a consequence, metalieuristics are typically evaluated empirically using a set of test problems. Unfortunately, relatively little attention has been given to the development of methodologies and tools for the large-scale empirical evaluation and/or comparison of metaheuristics. In this paper, we propose a landscape (test-problem) generator that can be used to generate optimization problem instances for continuous, bound-constrained optimization problems. The landscape generator is parameterized by a small number of parameters, and the values of these parameters have a direct and intuitive interpretation in terms of the geometric features of the landscapes that they produce. An experimental space is defined over algorithms and problems, via a tuple of parameters for any specified algorithm and problem class (here determined by the landscape generator). An experiment is then clearly specified as a point in this space, in a way that is analogous to other areas of experimental algorithmics, and more generally in experimental design. Experimental results are presented, demonstrating the use of the landscape generator. In particular, we analyze some simple, continuous estimation of distribution algorithms, and gain new insights into the behavior of these algorithms using the landscape generator.
Resumo:
We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photons and a superposition of coherent states, from input single- and two-photon Fock states, respectively. The input Fock state is interacted with an ancilla squeezed vacuum state using a beam splitter. We transform the quantum system by postselecting on the continuous-observable measurement outcome of the ancilla state. We experimentally demonstrate the principles of this scheme using coherent states and experimentally measure fidelities that are only achievable using quantum resources.
Resumo:
We propose that the Baxter's Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j -> infinity limit of the corresponding transfer matrix with spin-j (i.e., (2j + I)-dimensional) auxiliary space. The associated T-Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundamental transfer matrix. The solution yields the complete spectrum of the Hamiltonian. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we consider how refinements between state-based specifications (e.g., written in Z) can be checked by use of a model checker. Specifically, we are interested in the verification of downward and upward simulations which are the standard approach to verifying refinements in state-based notations. We show how downward and upward simulations can be checked using existing temporal logic model checkers. In particular, we show how the branching time temporal logic CTL can be used to encode the standard simulation conditions. We do this for both a blocking, or guarded, interpretation of operations (often used when specifying reactive systems) as well as the more common non-blocking interpretation of operations used in many state-based specification languages (for modelling sequential systems). The approach is general enough to use with any state-based specification language, and we illustrate how refinements between Z specifications can be checked using the SAL CTL model checker using a small example.