100 resultados para quantum computing, molecular electronics, lab-on-a-chip
Resumo:
The Quadrifoliovariinae is revised and three new species of Quadrifoliovarium Yamaguit, 1965 from acanthurid fishes of the genus Naso from waters of the Indo-Pacific are described: Q, maceria n. sp. from N. tonganus, N. annulatus, N. fageni and N. brevirostris; Q. simplex n. sp. from N. tonganus and N. quannulatus; and Q. quattuordecim n. sp. from N. tonganus. Amendments are made to the characterisation of the Quadrifoliovariinae, Quadrifoliovarium, Bilacinia Manter, 1969 and Unilacinia Manter, 1969 in light of observations on type and new material. A molecular phylogeny based on ITS2 and 28S regions of the ribosomal DNA is proposed. The phylogeny suggests that U. asymmetrica is the most basal taxon and Q. simplex n. sp. and Q. quattuordecim n. sp. the most derived. Evolution of morphological traits within the Quadrifoliovariinae are discussed in light of the molecular phylogeny. Molecular sequences of the ITS2 rDNA were identical between specimens of Q. pritchardae collected off Exmouth (Indian Ocean), Heron Island and Lizard Island (Western Pacific) and Moorea (far Eastern Indo-Pacific), indicating a broad Indo-Pacific distribution. All members of the subfamily are recorded only from the acanthurid genus Naso, with the exception of B. lobatum (Yamaguti, 1970), which has been recorded from a pomacanthid. The restricted host range of the group is discussed in the light of the phylogeny of the host genus Naso.
Resumo:
A proposal for using single molecules as nanoprobes capable of detecting the trajectory of an elementary charge is discussed in detail. Presented numerical simulations prove that this singlemolecule technique allows determination of a three-dimensional single-electron displacement within a few seconds with an accurocy better than 0.006 nm. Surprisingly, this significantly exceeds the accuracy with which the probe;, molecule itself can be localized (given the same measuring time by means of single-molecule microscopy. It is also shown that the optimal concentration of probe molecules in the vicinity of:the electron (i.e. the concentration which provides the best accuracy of the inferred electron displacement) is of the order of 10(-5) m.
Resumo:
It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys. Rev. Lett. 77, 1032 (1996)] that quantum interference between two molecular transitions can lead to a suppression or enhancement of spontaneous emission. This is manifest in the fluorescent intensity as a function of the detuning of the driving field from the two-photon resonance condition. Here we present a theory that explains the observed variation of the number of peaks with the mutual polarization of the molecular transition dipole moments. Using master equation techniques we calculate analytically as well as numerically the steady-state fluorescence, and find that the number of peaks depends on the excitation process. If the molecule is driven to the upper levels by a two-photon process, the fluorescent intensity consists of two peaks regardless of the mutual polarization of the transition dipole moments. Lf the excitation process is composed of both a two-step, one-photon process and a one-step, two-photon process, then there are two peaks on transitions with parallel dipole moments and three peaks on transitions with antiparallel dipole moments. This latter case is in excellent agreement with the experiment.
Resumo:
We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator.
Resumo:
Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.
Resumo:
We study the effect of quantum interference on the population distribution and absorptive properties of a V-type three-level atom driven by two lasers of unequal intensities and different angular frequencies. Three coupling configurations of the lasers to the atom are analysed: (a) both lasers coupled to the same atomic transition, (b) each laser coupled to different atomic transition and (c) each laser coupled to both atomic transitions. Dressed stales for the three coupling configurations are identified, and the population distribution and absorptive properties of the weaker field are interpreted in terms of transition dipole moments and transition frequencies among these dressed states. In particular, we find that in the first two cases there is no population inversion between the bare atomic states, but the population can be trapped in a superposition of the dressed states induced by quantum interference and the stronger held. We show that the trapping of the population, which results from the cancellation of transition dipole moments, does not prevent the weaker field to be coupled to the cancelled (dark) transitions. As a result, the weaker field can be strongly amplified on transparent transitions. In the case of each laser coupled to both atomic transitions the population can be trapped in a linear superposition of the excited bare atomic states leaving the ground state unpopulated in the steady state. Moreover, we find that the absorption rate of the weaker field depends on the detuning of the strong field from the atomic resonances and the splitting between the atomic excited states. When the strong held is resonant to one of the atomic transitions a quasi-trapping effect appears in one of the dressed states. In the quasi-trapping situation all the transition dipole moments are different from zero, which allows the weaker field to be amplified on the inverted transitions. When the strong field is tuned halfway between the atomic excited states, the population is completely trapped in one of the dressed states and no amplification is found for the weaker field.
Resumo:
Quantum feedback can stabilize a two-level atom against decoherence (spontaneous emission), putting it into an arbitrary (specified) pure state. This requires perfect homodyne detection of the atomic emission, and instantaneous feedback. Inefficient detection was considered previously by two of us. Here we allow for a non-zero delay time tau in the feedback circuit. Because a two-level atom is a non-linear optical system, an analytical solution is not possible. However, quantum trajectories allow a simple numerical simulation of the resulting non-Markovian process. We find the effect of the time delay to be qualitatively similar to chat of inefficient detection. The solution of the non-Markovian quantum trajectory will not remain fixed, so that the time-averaged state will be mixed, not pure. In the case where one tries to stabilize the atom in the excited state, an approximate analytical solution to the quantum trajectory is possible. The result, that the purity (P = 2Tr[rho (2)] - 1) of the average state is given by P = 1 - 4y tau (where gamma is the spontaneous emission rate) is found to agree very well with the numerical results. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We give a simple proof of a formula for the minimal time required to simulate a two-qubit unitary operation using a fixed two-qubit Hamiltonian together with fast local unitaries. We also note that a related lower bound holds for arbitrary n-qubit gates.
Resumo:
We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Recent progresses for non-zero total angular momentum J calculations of resonances including parallel computing models are also included and future directions in this field are discussed.
Resumo:
A quantum circuit implementing 5-qubit quantum-error correction on a linear-nearest-neighbor architecture is described. The canonical decomposition is used to construct fast and simple gates that incorporate the necessary swap operations allowing the circuit to achieve the same depth as the current least depth circuit. Simulations of the circuit's performance when subjected to discrete and continuous errors are presented. The relationship between the error rate of a physical qubit and that of a logical qubit is investigated with emphasis on determining the concatenated error correction threshold.
Resumo:
We investigate resonant tunnelling through molecular states of an Aharonov-Bohm (AB) interferometer composed of two coupled quantum dots. The conductance of the system shows two resonances associated with the bonding and the antibonding quantum states. We predict that the two resonances are composed of a Breit-Wigner resonance and a Fano resonance, of which the widths and Fano factor depend on the AB phase very sensitively. Further, we point out that the bonding properties, such as the covalent and ionic bonding, can be identified by the AB oscillations.
Resumo:
The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian-Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction.
Resumo:
Monte Carlo and molecular dynamics simulations and neutron scattering experiments are used to study the adsorption and diffusion of hydrogen and deuterium in zeolite Rho in the temperature range of 30-150 K. In the molecular simulations, quantum effects are incorporated via the Feynman-Hibbs variational approach. We suggest a new set of potential parameters for hydrogen, which can be used when Feynman-Hibbs variational approach is used for quantum corrections. The dynamic properties obtained from molecular dynamics simulations are in excellent agreement with the experimental results and show significant quantum effects on the transport at very low temperature. The molecular dynamics simulation results show that the quantum effect is very sensitive to pore dimensions and under suitable conditions can lead to a reverse kinetic molecular sieving with deuterium diffusing faster than hydrogen.
Resumo:
We investigate the use of nanocrystal quantum dots as a quantum bus element for preparing various quantum resources for use in photonic quantum technologies. Using the Stark-tuning property of nanocrystal quantum dots as well as the biexciton transition, we demonstrate a photonic controlled-NOT (CNOT) interaction between two logical photonic qubits comprising two cavity field modes each. We find the CNOT interaction to be a robust generator of photonic Bell states, even with relatively large biexciton losses. These results are discussed in light of the current state of the art of both microcavity fabrication and recent advances in nanocrystal quantum dot technology. Overall, we find that such a scheme should be feasible in the near future with appropriate refinements to both nanocrystal fabrication technology and microcavity design. Such a gate could serve as an active element in photonic-based quantum technologies.