77 resultados para pacs: engineering mathematics and mathematical techniques
Resumo:
Experimental and thermodynamic modeling studies have been carried out on the Zn-Fe-Si-O system. This research is part of a wider program to characterize zinc/lead industrial slags and sinters in the PbO-ZnO-SiO2-CaO-FeO-Fe2O3 system. Experimental investigations involve high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Liquidus temperatures and solid solubilities of the crystalline phases were measured in the temperature range from 1200 °C to 1450 °C (1473 to 1723 K) in the zinc ferrite, zincite, willemite, and tridymite primary-phase fields in the Zn-Fe-Si-O system in air. These equilibrium data for the Zn-Fe-Si-O system in air, combined with previously reported data for this system, were used to obtain an optimized self-consistent set of parameters of thermodynamic models for all phases.
Resumo:
Formulations of fuzzy integral equations in terms of the Aumann integral do not reflect the behavior of corresponding crisp models. Consequently, they are ill-adapted to describe physical phenomena, even when vagueness and uncertainty are present. A similar situation for fuzzy ODEs has been obviated by interpretation in terms of families of differential inclusions. The paper extends this formalism to fuzzy integral equations and shows that the resulting solution sets and attainability sets are fuzzy and far better descriptions of uncertain models involving integral equations. The investigation is restricted to Volterra type equations with mildly restrictive conditions, but the methods are capable of extensive generalization to other types and more general assumptions. The results are illustrated by integral equations relating to control models with fuzzy uncertainties.
Resumo:
By spliced alignment of human DNA and transcript sequence data we constructed a data set of transcript-confirmed exons and introns from 2793 genes, 796 of which (28%) were seen to have multiple isoforms. We find that over one-third of human exons can translate in more than one frame, and that this is highly correlated with G+C content. Introns containing adenosine at donor site position +3 (A3), rather than guanosine (G3), are more common in low G+C regions, while the converse is true in high G+C regions. These two classes of introns are shown to have distinct lengths, consensus sequences and correlations among splice signals, leading to the hypothesis that A3 donor sites are associated with exon definition, and G3 donor sites with intron definition. Minor classes of introns, including GC-AG, U12-type GT-AG, weak, and putative AG-dependant introns are identified and characterized. Cassette exons are more prevalent in low G+C regions, while exon isoforms are more prevalent in high G+C regions. Cassette exon events outnumber other alternative events, while exon isoform events involve truncation twice as often as extension, and occur at acceptor sites twice as often as at donor sites. Alternative splicing is usually associated with weak splice signals, and in a majority of cases, preserves the coding frame. The reported characteristics of constitutive and alternative splice signals, and the hypotheses offered regarding alternative splicing and genome organization, have important implications for experimental research into RNA processing. The 'AltExtron' data sets are available at http://www.bit.uq.edu.au/altExtron/ and http://www.ebi.ac.uk/similar tothanaraj/altExtron/.
Resumo:
Teaching the PSP: Challenges and Lessons Learned by Jurgen Borstler, David Carrington, Gregory W Hislop, Susan Lisack, Keith Olson, and Laurie Williams, pp. 42-48. Soft-ware engineering educators need to provide environments where students learn about the size and complexity of modern software systems and the techniques available for managing these difficulties. Five universities used the Personal Software Process to teach software engineering concepts in a variety of contexts.
Resumo:
Developments in computer and three dimensional (3D) digitiser technologies have made it possible to keep track of the broad range of data required to simulate an insect moving around or over the highly heterogeneous habitat of a plant's surface. Properties of plant parts vary within a complex canopy architecture, and insect damage can induce further changes that affect an animal's movements, development and likelihood of survival. Models of plant architectural development based on Lindenmayer systems (L-systems) serve as dynamic platforms for simulation of insect movement, providing ail explicit model of the developing 3D structure of a plant as well as allowing physiological processes associated with plant growth and responses to damage to be described and Simulated. Simple examples of the use of the L-system formalism to model insect movement, operating Lit different spatial scales-from insects foraging on an individual plant to insects flying around plants in a field-are presented. Such models can be used to explore questions about the consequences of changes in environmental architecture and configuration on host finding, exploitation and its population consequences. In effect this model is a 'virtual ecosystem' laboratory to address local as well as landscape-level questions pertinent to plant-insect interactions, taking plant architecture into account. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared with the standard model in a pig liver study. Methods: Eight pigs underwent a 5-min dynamic PET study after O-15-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual-inlet concentration was calculated as the flow-weighted inlet concentration. Dynamic PET data were analyzed with a traditional single-compartment model and 2 microvascular models. Results: Microvascular models provided a better fit of the tissue activity of an intravascular tracer than did the compartment model. In particular, the early dynamic phase after a tracer bolus injection was much improved. The regional hepatic blood flow estimates provided by the microvascular models (1.3 +/- 0.3 mL min(-1) mL(-1) for the single-capillary model and 1.14 +/- 0.14 min(-1) mL(-1) for the multiple-capillary model) (mean +/- SEM mL of blood min(-1) mL of liver tissue(-1)) were in agreement with the total blood flow measured by flow meters and normalized to liver weight (1.03 +/- 0.12 mL min(-1) mL(-1)). Conclusion: Compared with the standard compartment model, the 2 microvascular models provide a superior description of tissue activity after an intravascular tracer bolus injection. The microvascular models include only parameters with a clear-cut physiologic interpretation and are applicable to capillary beds in any organ. In this study, the microvascular models were validated for the liver and provided quantitative regional flow estimates in agreement with flow measurements.
Resumo:
Modeling physiological processes using tracer kinetic methods requires knowledge of the time course of the tracer concentration in blood supplying the organ. For liver studies, however, inaccessibility of the portal vein makes direct measurement of the hepatic dual-input function impossible in humans. We want to develop a method to predict the portal venous time-activity curve from measurements of an arterial time-activity curve. An impulse-response function based on a continuous distribution of washout constants is developed and validated for the gut. Experiments with simultaneous blood sampling in aorta and portal vein were made in 13 anesthetized pigs following inhalation of intravascular [O-15] CO or injections of diffusible 3-O[ C-11] methylglucose (MG). The parameters of the impulse-response function have a physiological interpretation in terms of the distribution of washout constants and are mathematically equivalent to the mean transit time ( T) and standard deviation of transit times. The results include estimates of mean transit times from the aorta to the portal vein in pigs: (T) over bar = 0.35 +/- 0.05 min for CO and 1.7 +/- 0.1 min for MG. The prediction of the portal venous time-activity curve benefits from constraining the regression fits by parameters estimated independently. This is strong evidence for the physiological relevance of the impulse-response function, which includes asymptotically, and thereby justifies kinetically, a useful and simple power law. Similarity between our parameter estimates in pigs and parameter estimates in normal humans suggests that the proposed model can be adapted for use in humans.
Resumo:
Admission controls, such as trunk reservation, are often used in loss networks to optimise their performance. Since the numerical evaluation of performance measures is complex, much attention has been given to finding approximation methods. The Erlang Fixed-Point (EFP) approximation, which is based on an independent blocking assumption, has been used for networks both with and without controls. Several more elaborate approximation methods which account for dependencies in blocking behaviour have been developed for the uncontrolled setting. This paper is an exploratory investigation of extensions and synthesis of these methods to systems with controls, in particular, trunk reservation. In order to isolate the dependency factor, we restrict our attention to a highly linear network. We will compare the performance of the resulting approximations against the benchmark of the EFP approximation extended to the trunk reservation setting. By doing this, we seek to gain insight into the critical factors in constructing an effective approximation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Let X and Y be Hausdorff topological vector spaces, K a nonempty, closed, and convex subset of X, C: K--> 2(Y) a point-to-set mapping such that for any x is an element of K, C(x) is a pointed, closed, and convex cone in Y and int C(x) not equal 0. Given a mapping g : K --> K and a vector valued bifunction f : K x K - Y, we consider the implicit vector equilibrium problem (IVEP) of finding x* is an element of K such that f (g(x*), y) is not an element of - int C(x) for all y is an element of K. This problem generalizes the (scalar) implicit equilibrium problem and implicit variational inequality problem. We propose the dual of the implicit vector equilibrium problem (DIVEP) and establish the equivalence between (IVEP) and (DIVEP) under certain assumptions. Also, we give characterizations of the set of solutions for (IVP) in case of nonmonotonicity, weak C-pseudomonotonicity, C-pseudomonotonicity, and strict C-pseudomonotonicity, respectively. Under these assumptions, we conclude that the sets of solutions are nonempty, closed, and convex. Finally, we give some applications of (IVEP) to vector variational inequality problems and vector optimization problems. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
For products sold with warranty, the warranty servicing cost can be reduced by improving product reliability through a development process. However, this increases the unit manufacturing cost. Optimal development must achieve a trade-off between these two costs. The outcome of the development process is uncertain and needs to be taken into account in the determination of the optimal development effort. The paper develops a model where this uncertainty is taken into account. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Andrews and Curtis conjectured in 1965 that every balanced presentation of the trivial group can be transformed into a standard presentation by a finite sequence of elementary transformations. Recent computational work by Miasnikov and Myasnikov on this problem has been based on genetic algorithms. We show that a computational attack based on a breadth-first search of the tree of equivalent presentations is also viable, and seems to outperform that based on genetic algorithms. It allows us to extract shorter proofs (in some cases, provably shortest) and to consider the length thirteen case for two generators. We prove that, up to equivalence, there is a unique minimum potential counterexample.
Resumo:
In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper we give an overview of some very recent work, as well as presenting a new approach, on the stochastic simulation of multi-scaled systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge–Kutta methods and the balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and present a new approach which couples the three regimes mentioned above. We then apply this approach to a biologically inspired problem involving the expression and activity of LacZ and LacY proteins in E. coli, and conclude with a discussion on the significance of this work.