179 resultados para measurement technology
Resumo:
We consider continuous observation of the nonlinear dynamics of single atom trapped in an optical cavity by a standing wave with intensity modulation. The motion of the atom changes the phase of the field which is then monitored by homodyne detection of the output field. We show that the conditional Hilbert space dynamics of this system, subject to measurement-induced perturbations, depends strongly on whether the corresponding classical dynamics is regular or chaotic. If the classical dynamics is chaotic, the distribution of conditional Hilbert space vectors corresponding to different observation records tends to be orthogonal. This is a characteristic feature of hypersensitivity to perturbation for quantum chaotic systems.
Resumo:
Rates of cell size increase are an important measure of success during the baculovirus infection process. Batch and fed batch cultures sustain large fluctuations in osmolarity that can affect the measured cell volume if this parameter is not considered during the sizing protocol. Where osmolarity differences between the sizing diluent and the culture broth exist, biased measurements of size are obtained as a result of the cell osmometer response. Spodoptera frugiperda (Sf9) cells are highly sensitive to volume change when subjected to a change in osmolarity. Use of the modified protocol with culture supernatants for sample dilution prior to sizing removed the observed error during measurement.
Resumo:
In quantum measurement theory it is necessary to show how a, quantum source conditions a classical stochastic record of measured results. We discuss mesoscopic conductance using quantum stochastic calculus to elucidate the quantum nature of the measurement taking place in these systems. To illustrate the method we derive the current fluctuations in a two terminal mesoscopic circuit with two tunnel barriers containing a single quasi bound state on the well. The method enables us to focus on either the incoming/ outgoing Fermi fields in the leads, or on the irreversible dynamics of the well state itself. We show an equivalence between the approach of Buttiker and the Fermi quantum stochastic calculus for mesoscopic systems.
Resumo:
Current theoretical thinking about dual processes in recognition relies heavily on the measurement operations embodied within the process dissociation procedure. We critically evaluate the ability of this procedure to support this theoretical enterprise. We show that there are alternative processes that would produce a rough invariance in familiarity (a key prediction of the dual-processing approach) and that the process dissociation procedure does not have the power to differentiate between these alternative possibilities. We also show that attempts to relate parameters estimated by the process dissociation procedure to subjective reports (remember-know judgments) cannot differentiate between alternative dual-processing models and that there are problems with some of the historical evidence and with obtaining converging evidence. Our conclusion is that more specific theories incorporating ideas about representation and process are required.
Resumo:
In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP-without concurrent activity of the abdominal or back extensor muscles-produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to similar to 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (similar to6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A knowledge of the physicochemical properties of inclusion bodies is important for the rational design of potential recovery processes such as flotation and precipitation. In this study, measurement of the size and electrophoretic mobility of protein inclusion bodies and cell debris was undertaken. SDS-PAGE analysis of protein inclusion bodies subjected to different cleaning regimes suggested that electrophoretic mobility provides a qualitative measure of protein inclusion body purity. Electrophoretic mobility as a function of electrolyte type and ionic strength was investigated. The presence of divalent ions produced a stronger effect on electrophoretic mobility compared with monovalent ions. The isoelectric point of cell debris was significantly lower than that for the inclusion bodies. Hence, the contaminating cell debris may be separated from inclusion bodies using flotation by exploiting this difference in isoelectric points. Separation by this method is simple, convenient, and a possible alternative to the conventional route of centrifugation.
Resumo:
We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including: quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.
Resumo:
Purification of recombinant human growth hormone (rhGH) from Chinese hamster ovary (CHO) cell culture supernatant by Gradiflow large-scale electrophoresis is described. Production of rhGH in CHO cells is an alternative to production in Escherichia coli, with the advantage that rhGH is secreted into protein-free production media, facilitating a more simple purification and avoiding resolubilization of inclusion bodies and protein refolding. As an alternative to conventional chromatography, rhGH was purified in a one-step procedure using Gradiflow technology. Clarified culture supernatant containing rhGH was passed through a Gradiflow BF200 and separations were performed over 60 min using three different buffers of varying pH. Using a 50 mM Tris/Hepes buffer at pH 7.5 together with a 50 kDa separation membrane, rhGH was purified to approximately 98% purity with a yield of 90%. This study demonstrates the ability of Gradiflow preparative electrophoresis technology to purify rhGH from mammalian cell culture supernatant in a one-step process with high purity and yield. As the Gradiflow is directly scalable, this study also illustrates the potential for the inclusion of the Gradiflow into bioprocesses for the production of clinical grade rhGH and other therapeutic proteins. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
We outline a scheme to accomplish measurements of a solid state double well system (DWS) with both one and two electrons in nonlocalized bases. We show that, for a single particle, measuring the local charge distribution at the midpoint of a DWS using a SET as a sensitive electrometer amounts to performing a projective measurement in the parity (symmetric/antisymmetric) eigenbasis. For two-electrons in a DWS, a similar configuration of SET results in close-to-projective measurement in the singlet/triplet basis. We analyze the sensitivity of the scheme to asymmetry in the SET position for some experimentally relevant parameter, and show that it is experimentally realizable.
Resumo:
We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator.
Resumo:
We characterize asymmetric equilibria in two-stage process innovation games and show that they are prevalent in the different models of R&D technology considered in the literature. Indeed, cooperation in R&D may be accompanied by high concentration in the product market. We show that while such an increase may be profitable, it may be socially inefficient.
Resumo:
A measure of dimensional anxiety specifically designed for use in older people is urgently needed. Such a measure could be used in a variety of settings to screen for anxiety disorders and to measure response to treatment in older people with established anxiety disorders. We have developed a new instrument to measure generalized anxiety symptoms in older people, the Geriatric Anxiety Inventory (GAI). This new instrument uses plain language, minimises somatic items and has a dichotomous response scale. Although it is a self-report measure, it may readily be administered to frail and mildly cognitively impaired older people by nursing staff. The development and initial validation of the GAI will be described. The scale was administered to community samples as well as patients with anxiety, depression, and mild cognitive impairment. Reliability was high and validity sound when compared to a range of standard anxiety instruments, and the instrument was well-tolerated among these cohorts. Sensitivity, specificity and cut-off scores for community and impatient samples will be presented.
Resumo:
Traumatic brain injury (TBI) may result in a variety of cognitive, behavioural and physical impairments. Dizziness has been reported in up to 80% of cases within the first few days after injury. The literature was reviewed to attempt to delineate prevalence of dizziness as a symptom, impairments causing dizziness, the functional limitations it causes and its measurement. The literature provides widely differing estimates of prevalence and vestibular system dysfunction appears to be the best reported of impairments contributing to this symptom. The variety of results is discussed and other possible causes for dizziness were reviewed. Functional difficulties caused by dizziness were not reported for this population in the literature and review of cognitive impairments suggests that existing measurement tools for dizziness may be problematic in this population. Research on the functional impact of dizziness in the TBI population and measurement of these symptoms appears to be warranted.