61 resultados para Topological Spaces
Resumo:
Summarizing topological relations is fundamental to many spatial applications including spatial query optimization. In this article, we present several novel techniques to effectively construct cell density based spatial histograms for range (window) summarizations restricted to the four most important level-two topological relations: contains, contained, overlap, and disjoint. We first present a novel framework to construct a multiscale Euler histogram in 2D space with the guarantee of the exact summarization results for aligned windows in constant time. To minimize the storage space in such a multiscale Euler histogram, an approximate algorithm with the approximate ratio 19/12 is presented, while the problem is shown NP-hard generally. To conform to a limited storage space where a multiscale histogram may be allowed to have only k Euler histograms, an effective algorithm is presented to construct multiscale histograms to achieve high accuracy in approximately summarizing aligned windows. Then, we present a new approximate algorithm to query an Euler histogram that cannot guarantee the exact answers; it runs in constant time. We also investigate the problem of nonaligned windows and the problem of effectively partitioning the data space to support nonaligned window queries. Finally, we extend our techniques to 3D space. Our extensive experiments against both synthetic and real world datasets demonstrate that the approximate multiscale histogram techniques may improve the accuracy of the existing techniques by several orders of magnitude while retaining the cost efficiency, and the exact multiscale histogram technique requires only a storage space linearly proportional to the number of cells for many popular real datasets.
Resumo:
In this paper, we propose a novel high-dimensional index method, the BM+-tree, to support efficient processing of similarity search queries in high-dimensional spaces. The main idea of the proposed index is to improve data partitioning efficiency in a high-dimensional space by using a rotary binary hyperplane, which further partitions a subspace and can also take advantage of the twin node concept used in the M+-tree. Compared with the key dimension concept in the M+-tree, the binary hyperplane is more effective in data filtering. High space utilization is achieved by dynamically performing data reallocation between twin nodes. In addition, a post processing step is used after index building to ensure effective filtration. Experimental results using two types of real data sets illustrate a significantly improved filtering efficiency.
Resumo:
In 2002, the authors reviewed the educational performance of a state education department virtual schooling service during its first 2 years of operation, 2000-2001 (Pendergast, Kapitzke, Land, Luke, & Bahr, 2002). Established by Education Queensland, the Virtual Schooling Service (VSS) utilises synchronous and asynchronous online delivery strategies and a range of learning technologies to support students at a distance (see http://education.qld.gov.au/learningplace/vss/). The service commenced with a focus on senior secondary subjects. At present, there are over 700 students in 89 schools across the state enrolled in 9 subjects. In response to the recommendations of the study, a series of professional development activities were conducted with the VSS teachers by the authors. Opportunity for critical reflection was provided, including consideration of the ways in which the teachers were developing as a learning community. Some data, including visual representations, were collected from participants with the purpose of understanding how VSS teachers are constructed as professionals. This study compares and contrasts that data with self-constructions of teacher professionals in other fields.
Resumo:
As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.