49 resultados para Quantitative verification
Resumo:
Plasma levels of lipoprotein(a) _ Lp(a) _ are associated with cardiovascular risk (Danesh et al., 2000) and were long believed to be influenced by the LPA locus on chromosome 6q27 only. However, a recent report of Broeckel et al. (2002) suggested the presence of a second quantitative trait locus on chromosome 1 influencing Lp(a) levels. Using a two-locus model, we found no evidence for an additional Lp(a) locus on chromosome 1 in a linkage study among 483 dizygotic twin pairs.
Resumo:
The left ventricular response to dobutamine may be quantified using tissue Doppler measurement of myocardial velocity or displacement or 3-dimensional echocardiography to measure ventricular volume and ejection fraction. This study sought to explore the accuracy of these methods for predicting segmental and global responses to therapy. Standard dobutamine and 3-dimensional echocardiography were performed in 92 consecutive patients with abnormal left ventricular function at rest. Recovery of function was defined by comparison with follow-up echocardiography at rest 5 months later. Segments that showed improved regional function at follow-up showed a higher increment in peak tissue Doppler velocity with dobutamine therapy than in nonviable segments (1.2 +/- 0.4 vs 0.3 +/- 0.2 cm/s, p = 0.001). Similarly, patients who showed a > 5% improvement of ejection fraction at follow-up showed a greater displacement response to dobutamine (6.9 +/- 3.2 vs 2.1 +/- 2.3 mm, p = 0.001), as well as a higher rate of ejection fraction, response to dobutamine (9 +/- 3% vs 2 +/- 2%, p = 0.001). The optimal cutoff values for predicting subsequent recovery of function at rest were an increment of peak velocity > 1 cm/s, >5 mm of displacement, and a >5% improvement of ejection fraction with low-dose dobutamine. (C) 2003 by Excerpta Medica, Inc.
Resumo:
Recent studies have revealed regional variation in the density and distribution of inhibitory neurons in different cortical areas, which are thought to reflect area-specific specializations in cortical circuitry. However, there are as yet few standardized quantitative data regarding how the inhibitory circuitry in prefrontal cortex (PFC), which is thought to be involved in executive functions such as cognition, emotion and decision making, compares to that in other cortical areas. Here we used immunohistochemical techniques to determine the density and distribution of parvalbumin (PV)-, calbindin (CB)-, and calretinin (CR)-immunoreactive (ir) neurons and axon terminals in the dorsolateral and orbital PFC of the owl monkey (Aotus trivirgatus), and compared them directly with data obtained using the same techniques in 11 different visual, somatosensory and motor areas. We found marked differences in the density of PV-ir, CB-ir, and CR-ir interneurons in several cortical areas. One hundred and twenty eight of all 234 possible between-area pairwise comparisons were significantly different. The density of specific subpopulations of these cells also varied among cortical areas, as did the density of axon terminals. Comparison of PFC with other cortical areas revealed that 40 of all 66 possible statistical comparisons of the density of PV-ir, CB-ir, and CR-ir cells were significantly different. We also found evidence for heterogeneity in the pattern of labeling of PV-ir, CB-ir, and CR-ir cells and axon terminals between the dorsolateral and orbital subdivisions of PFC. These data are likely to reflect basic differences in interneuron circuitry, which are likely to influence inhibitory function in the cortex. Copyright (C) 2003 S. Karger AG, Basel.