54 resultados para Milk yield persistency
Resumo:
Spatial and temporal variability in wheat production in Australia is dominated by rainfall occurrence. The length of historical production records is inadequate, however, to analyse spatial and temporal patterns conclusively. In this study we used modelling and simulation to identify key spatial patterns in Australian wheat yield, identify groups of years in the historical record in which spatial patterns were similar, and examine association of those wheat yield year groups with indicators of the El Nino Southern Oscillation (ENSO). A simple stress index model was trained on 19 years of Australian Bureau of Statistics shire yield data (1975-93). The model was then used to simulate shire yield from 1901 to 1999 for all wheat-producing shires. Principal components analysis was used to determine the dominating spatial relationships in wheat yield among shires. Six major components of spatial variability were found. Five of these represented near spatially independent zones across the Australian wheatbelt that demonstrated coherent temporal (annual) variability in wheat yield. A second orthogonal component was required to explain the temporal variation in New South Wales. The principal component scores were used to identify high- and low-yielding years in each zone. Year type groupings identified in this way were tested for association with indicators of ENSO. Significant associations were found for all zones in the Australian wheatbelt. Associations were as strong or stronger when ENSO indicators preceding the wheat season (April-May phases of the Southern Oscillation Index) were used rather than indicators based on classification during the wheat season. Although this association suggests an obvious role for seasonal climate forecasting in national wheat crop forecasting, the discriminatory power of the ENSO indicators, although significant, was not strong. By examining the historical years forming the wheat yield analog sets within each zone, it may be possible to identify novel climate system or ocean-atmosphere features that may be causal and, hence, most useful in improving seasonal forecasting schemes.
Resumo:
zFour rumen-fistulated, multiparous Holstein-Friesian cows in early lactation were offered mixed diets based on rhodes grass hay (Chloris gayana) cv. Callide containing 13, 14, 15 or 16% crude protein (CP) on a dry matter basis, in a 4 x 4 latin square design. The estimated undegradable protein concentration in these diets was similar with rumen degradable protein concentration varying. Cows fed a diet containing 13% CP had lower (P = 0.07) milk yields than cows in other treatments (20.4 vs 21.9, 22.0 and 22.2 L/d for 13, 14, 15 and 16% CP, respectively). A positive linear relationship was found (P = 0.06) between organic matter intake and dietary CP%. There were negative linear relationships between dietary CP% and digestibilities of dry matter (P = 0.09), organic matter (P = 0.06) and neutral detergent fibre (P = 0.02). Feeding a diet containing 13% CP resulted in significantly lower (P = 0.001) molar proportions (%) of rumen valerate in comparison with other treatments. The molar proportions of isovalerate differed (P = 0.001) between treatments (0.66, 0.78, 0.89 and 1.04%) for 13, 14, 15 and 16% CP, respectively). Dietary protein level had no effect on rates of passage, in situ digestion of rhodes grass hay or ratios of allantoin: creatinine in urine. These data showed that increasing the dietary CP concentration of lactating cows fed diets based on rhodes grass hay increased intakes and not significantly improved at dietary CP concentrations above 14% DM.
Resumo:
Ethephon promotes fruit abscission and accelerates harvest of macadamia, Macadamia integrifolia (Proteaceae), but has limited use due to concerns that associated abscission of inner-canopy leaves may reduce subsequent yield and nut quality. Yield and quality were monitored for 2 years following ethephon application to both unshaken and mechanically shaken trees of the late-abscising cultivar, A16. Nut quality was not adversely affected in subsequent seasons, but effects on yield varied. In 3 of 6 experiments, ethephon reduced yield in the year after application. However, in 4 of the 6 experiments, 2 years of ethephon application greatly elevated yield in the third year. This was not a compensating recovery from low second-year yield, as third-year yield of trees that received only 1 ethephon treatment did not differ from yield of control trees. Ethephon-assisted harvest remains feasible for macadamia, although further work is warranted given the potential risks and considerable benefits for subsequent yield. Inner canopy defoliation, resulting from ethephon use, could represent a canopy management technique for dense-canopy fruit trees.
Resumo:
Proteolysis of UHT milk during storage at room temperature is a major factor limiting its shelf-life through changes in its flavour and texture. The latter is characterised by increases in viscosity leading in some cases to gel formation. The enzymes responsible for the proteolysis are the native milk alkaline proteinase, plasmin, and heat-stable, extracellular bacterial proteinases produced by psychrotrophic bacterial contaminants in the milk prior to heat processing. These proteinases react differently with the milk proteins and produce different peptides in the UHT milk. In order to differentiate these peptide products, reversed-phase HPLC and the fluorescamine method were used to analyse the peptides soluble in 12% trichloroacetic acid (TCA) and those soluble at pH 4.6. The TCA filtrate showed substantial peptide peaks only if the milk was contaminated by bacterial proteinase, while the pH 4.6 filtrate showed peptide peaks when either or both bacterial and native milk proteinases caused the proteolysis. Results from the fluorescamine test were in accordance with the HPLC results whereby the TCA filtrate exhibited significant proteolysis values only when bacterial proteinases were present, but the pH 4.6 filtrates showed significant values when the milk contained either or both types of proteinase. A procedure based on these analyses is proposed as a diagnostic test for determining which type of proteinase-milk plasmin, bacterial proteinase, or both-is responsible for proteolysis in UHT milk. (C) 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Continuous heat treatment by UHT processing has attracted interest as an alternative to the batch-heating method conventionally used in the production of yogurt. Several studies have been conducted on the manufacture of yogurt from milk heated by UHT processes and have compared it with the conventional method. This paper reviews the characteristics of yogurt made from UHT milk, including its apparent viscosity, gel strength, microstructure, syneresis (water-holding capacity) and flavour, as well as the behaviour of yogurt cultures in the UHT-treated pre-mix.
Resumo:
Raw milk samples from two different sources were stored at 2degreesC, 4degreesC and 7degreesC for 10 days and the growth of psychrotrophic bacteria, production of proteinase and proteolysis in the milks were measured during storage. Peptide analyses by the fluorescamine method and RP-HPLC were used in determination of proteolysis and proteinase activity. The average times taken for the psychrotroph counts to reach 10(7) cfu/mL at 2degreesC, 4degreesC and 7degreesC were approximately 9, 7 and 4 days, although there was considerable variation in growth rates in the different milks. There was little correlation between psychrotroph counts and either proteolysis or proteinase activity levels. At 2degreesC, no milk stored showed significant proteolysis by the fluorescamine method after 10 days' storage, but significant proteinase activity could be measured in some of these milks at 8 and 10 days. RP-HPLC analysis was a more sensitive means of detecting peptides than the fluorescamine method.
Resumo:
A hyphenated instrumental approach has been used to obtain reliable values for the propagation rate coefficients as a function of conversion for polymerizations of methyl methacrylate (MMA) and a mixture of MMA and ethyleneglycol dimethacrylate (EGDMA) with a 1:1 concentration of double bonds, from near the onset of the Trommsdorf region into the glass region. ESR spectroscopy was used to measure the radical concentration while FT-NIR fibre-optic spectroscopy was employed to measure instantaneously the double-bond concentration within the temperature-controlled cavity of the ESR instrument during polymerization. The advantage of this approach to the measurement of the rate coefficient is that it is equally applicable to branching and linear polymerizations. For the polymerization of methyl methacrylate, the values of the rate coefficient at the lowest conversions at which reliable values could be obtained were in agreement with recently reported values obtained by the PLP-SEC method. For the lowest conversions, the values obtained were 403 1 mol(-1) s(-1) at 306 K for MMA and 5201 mol(-1) s(-1) at 310 K for a 1:1 mixture of MMA and EGDMA. (C) 2003 Society of Chemical Industry.
Resumo:
Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.