97 resultados para LARVAL MIDGUT
Resumo:
Closantel binds to the serum proteins of the host and affects blood sucking parasites when they ingest the brood of treated hosts. Closantel binds specifically to ovine serum albumin (K-a of 9.3 x 10(6)M(-1)) at site I, the warfarin/phenylbutazone binding site of albumin Closantel also binds to invertebrate haemocyanin and haemolymph. The strongest binding of closantel in homogenates of H. contortus is found in fractions containing soluble proteins. This binding is of low affinity and, because the site itself is not fully denaturable, it may not be proteinaceous. There is no detectable difference in binding affinity between homogenate fractions from closantel susceptible and resistant isolates of adult or larval worms suggesting that closantel resistance is not due to changes in the closantel receptor or carrier. (C) 2000 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Two small RNAs regulate the timing of Caenorhabditis elegans development(1,2). Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA(1,3,4), and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA 2. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs1,2,5,6. Here we have detected let-7 RNAs of similar to 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.
Resumo:
Intraspecific Drosophila studies suggest that resistance to heal and cold stresses are largely independent and that correlations across life cycle stages are low whereas comparisons of Drosophila species indicate correlations between heat and cold resistance as well as between resistance levels in different life cycle stages. These inconsistent results may reflect differences in associations among traits at the interspecific and intraspecific levels or interspecific correlations arising because of correlated selection pressures. These alternatives were tested using Drosophila serrata, D. birchii and hybrids derived from these species. Variation among hybrid lines and families was used to test associations at the interspecific level while intraspecific variation was examined using isofemale lines of D. serrata. There was a significant association between adult heat knockdown time at 38 degreesC and adult cold resistance in one set of hybrid lines. An association between female knockdown resistance to heat and larval heat resistance was also evident in one set of hybrids. Resistance to heat anti cold at the larval stage were not correlated at either the intraspecific or interspecific levels. At the intraspecific level, lan al heat resistance and two measures of adult heat resistance were uncorrelated. Moreover, adult and larval cold resistance measures were not correlated at either the intraspecific or interspecific levels. These results suggest that there are no associations between resistance to heat and cold extremes and that extreme temperature resistance is largely independent across life cycle stages at both the intraspecific and interspecific levels. Species associations may therefore arise from correlated selection pressures rather than trait correlations. (C) 2000 The Linnean Society of London.
Resumo:
Caterpillars of Euploea core corinna (W. S. Macleay) sever leaf veins prior to feeding on their latex-bearing host plants, which restricts the flow of latex at feeding sites. The severing of leaf veins by insects feeding on latex-bearing plants is commonly referred to as 'sabotaging' and is thought to be an evolved response by the insect to counter the negative effects of feeding on latex-rich leaves. Sabotaging behaviour is described for all instars of E. core corinna, with particular attention given to neonates. Vein cutting by neonate E. core corinna caterpillars can occur within 2 h of hatching, with most caterpillars establishing feeding sites within 10 h. Commonly, first instars cut an are-shaped row of leaf side-veins parallel to the leaf margin, but they may also cut the leaf mid-rib in a fashion similar to older instar larvae. From a sample of 50 E. core corinna larvae, representing all instars, we found that the diameters of the veins cut by caterpillars are closely correlated to larval head width (r=0.90). Through manipulative experiments, we demonstrate for the first time that sabotaging behaviour in neonate caterpillars imposes no detectable short-term physiological costs on those caterpillars.
Resumo:
Recruiting coral reef fish larvae from 38 species and 19 families from New Caledonia were examined for parasites. We found 13 parasite species (Platyhelminthes: Monogenea, Cestoda and Trematoda) but no acanthocephalan, crustacean or nematode parasites. Over 23% of individual fish were infected. Didymozoid metacercariae were the most abundant parasites. We conclude that most of the parasites are pelagic species that become 'lost' once the fish larvae have recruited to the reef. Larval coral reef fish probably contribute little to the dispersal of the parasites of the adult fish so that parasite dispersal is more difficult than that of the fish themselves. (C) 2000 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Advantages of dispersal on the scales that are possible in a long pelagic larval period are not apparent, even for benthic species. An alternative hypothesis is that wide dispersal may be an incidental byproduct of an ontogenetic migration from and then back to the parental habitat. Under this hypothesis, the water column is a better habitat than the bottom for early development. Because the parental area is often an especially favorable habitat for juveniles and adults, selection may even favor larval retention or larval return rather than dispersal. Where larval capabilities and currents permit, a high percentage of recruits may then be produced from local adults. Expected consequences of a high proportion of local recruitment are stronger links between stock and recruitment, greater vulnerability to recruitment overfishing and local modifications of habitat, greater local benefits from fishery reserves, and possibly more localized adaptation within populations. Export of some larvae is consistent with a high proportion of retained or returning larvae, could stabilize populations linked by larval exchange, and provide connectivity between marine reserves. Even a small amount of larval export could account for the greater gene flow, large ranges, and long evolutionary durations seen in species with long pelagic larval stages.
Resumo:
Effects of variation in larval quality on post-metamorphic performance in marine invertebrates are increasingly apparent. Recently, it has been shown that variation in offspring size can also strongly affect post-settlement survival, but variation in environmental conditions can mediate this effect. The quality of habitat into which marine invertebrate larvae settle can vary markedly, and 1 influence on quality is the number of conspecifics present. We tested the effects of settler size and settler density on early (1 wk after settlement) post-settlement survival in the field for the solitary ascidian Ciona intestinalis. Larger settlers survived better than smaller settlers, within and among groups of siblings. Increases in the density of settlers decreased survival, but the density-dependent effects were much stronger for smaller settlers. We suggest that larger settlers are better able to cope with intra-specific competition because they have greater energetic reserves or a greater capacity to feed than smaller settlers.
Resumo:
The positive relationship between offspring size and offspring fitness is a fundamental assumption of life-history theory, but it has received relatively little attention in the marine environment. This is surprising given that substantial intraspecific variation in offspring size is common in marine organisms and there are clear links between larval experience and adult performance. The metamorphosis of most marine invertebrates does not represent a newbeginning, and larval experiences can have effects that carry over to juvenile survival and growth. We show that larval size can have equally important carryover effects in a colonial marine invertebrate. In the bryozoan Bugula neritina, the size of the non-feeding larvae has a prolonged effect on colony performance after metamorphosis. Colonies that came from larger larvae survived better, grew faster, and reproduced sooner or produced more embryos than colonies that came from smaller larvae. These effects crossed generations, with colonies from larger larvae themselves producing larger larvae. These effects were found in two populations (in Australia and in the United States) in contrasting habitats.
Resumo:
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.
Resumo:
A central tenet of life-history theory is the presence of a trade-off between the size and number of offspring that a female can produce for a given clutch. A crucial assumption of this trade-off is that larger offspring perform better than smaller offspring. Despite the importance of this assumption empirical, field-based tests are rare, especially for marine organisms. We tested this assumption for the marine invertebrate, Diplosoma listerianum, a colonial ascidian that commonly occurs in temperate marine communities. Colonies that came from larger larvae had larger feeding structures than colonies that came from smaller larvae. Colonies that came from larger larvae also had higher survival and growth after 2 weeks in the field than colonies that came from smaller larvae. However, after 3 weeks in the field the colonies began to fragment and we could not detect an effect of larval size. We suggest that offspring size can have strong effects on the initial recruitment of D. listerianum but because of the tendency of this species to fragment, offspring size effects are less persistent in this species than in others.
Resumo:
In marine invertebrates, the larval and adult stages of many species are often ecologically distinct and as consequence these stages have been traditionally been viewed as physiologically separate. More recently, we have begun to recognize that metamorphosis does not represent a new beginning and events during the larval stage can influence adult performance. I will discuss recent work that suggests that the links between life-history stages are even more pervasive than we currently appreciate. For several species of marine invertebrate, I have found that events during one generation can strongly affect performance in the subsequent generation and events during the haploid phase can affect performance in the diploid phase. All of these links are mediated by changes in offspring size or offspring quality. I will discuss the implication of these strong links for the way we view the ecology of marine invertebrates and the evolution of offspring size in this group.
Resumo:
Increased Kt concentration in seawater induces metamorphosis in the ascidian Herdmania momus. Larvae cultivated at 24 degrees C exhibit highest rates of metamorphosis when treated with 40 mM KCl-elevated seawater at 21 degrees C. At 24 degrees C, H. momus larvae develop competence to respond to KCl-seawater and initiate metamorphosis approximately 3 h after hatching. Larval trunks and tails separated from the anterior papillae region, but maintained in a common tunic at a distance of greater than 60 mu m, do not undergo metamorphosis when treated with KCl-seawater; normal muscle degradation does not occur in separated tails while ampullae develop from papillae-containing anterior fragments. Normal programmed degradation of myofibrils occurs when posterior fragments are fused to papillae-containing anterior fragments. These data indicate that H. momus settlement and metamorphosis only occurs when larvae have attained competence, and suggest that an anterior signalling centre is stimulated to release a factor that induces metamorphosis.
Resumo:
The spatial and temporal association of muscle-specific tropomyosin gene expression, and myofibril assembly and degradation during metamorphosis is analyzed in the gastropod mollusc. Haliotis rufescens. Metamorphosis of tile planktonic larva to the benthic juvenile includes rearrangement and atrophy of specific larval muscles, and biogenesis of the new juvenile muscle system. The major muscle of the larva - the larval retractor muscle - reorganizes at metamorphosis, with two suites of cells having different fates. The ventral cells degenerate, while the dorsal cells become part of the developing juvenile mantle musculature. Prior to these changes in myofibrillar structure, tropomyosin mRNA prevalence declines until undetectable in the ventral cells, while increasing markedly in the dorsal cells. In the foot muscle and right shell muscle, tropomyosin mRNA levels remain relatively stable, even trough myofibril content increases. In a population of median mesoderm cells destined to form de novo the major muscle of the juvenile and adult (the columellar muscle), tropomyosin expression is initiated at 45 h after induction of metamorphosis. Myofibrillar filamentous actin is not detected in these cells until about 7 days later. Given that patterns of tropomyosin mRNA accumulation in relation to myofibril assembly and disassembly differ significantly among the four major muscle systems examined, we suggest that different regulatory mechanisms, probably operating at both transcriptional and post-transcriptional levels, control the biogenesis and atrophy of different larval and postlarval muscles at metamorphosis.
Resumo:
Attempts to immunise sheep against natural infestations by Lucilia cuprina larvae have not been effective. Yet it is known that the larvae excrete the immunosuppressant ammonium bicarbonate. The effect of larval ammonium and nonionic ammonia on immunopathobiology was evaluated in 12 infested sheep. The concentration of ammonium in veins draining infested sites was measured in another group of four sheep. Mean jugular unionized ammonia concentration increased 3.5 to 5.6 times above pre-infested control levels. Mean venous ammonium concentrations draining infested sites were 13 times higher than pre-infested jugular or carotid levels. Increases in jugular ammonia concentrations correlated with increased number of larvae, area of infestation, earlier death, neutropenia, eosinopenia, lymphocytopenia, large declines in serum globulins and zinc, and large rises in toxic neutrophils. The high concentrations of toxic unionized ammonia in blood directly permanently damaged neutrophils and lymphocytes and depressed serum globulin production. The results show that the ammonium from the excreta of larvae of L. cuprina may be highly immunosupressive. (C) 1997 Elsevier Science B.V.