82 resultados para Interfacial-Tension
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.
Resumo:
The chemical potential of adsorbed film inside cylindrical mesopores is dependent on the attractive interactions between the adsorbed molecules and adsorbent, the curvature of gas/adsorbed phase interface, and surface tension. A state equation of the adsorbed film is proposed to take into account the above factors. Nitrogen adsorption on model adsorbents, MCM-41, which exhibit uniform cylindrical channels, are used to verify the theoretical analysis. The proposed theory is capable of describing the important features of adsorption processes in cylindrical mesopores. According to this theory, at a given relative pressure, the smaller the pore radius is, the thicker the adsorbed film will be. The thickening of adsorbed films in the pores as the vapor pressure increases inevitably causes an increase in the interface curvature, which consequently leads to capillary condensation. Besides, this study confirmed that the interface tension depends substantially on the interface curvature in small mesopores. A quantitative relationship between the condensation pressure and the pore radius can be derived from the state equation and used to predict the pore radius from a condensation pressure, or vice versa.
Resumo:
Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
This paper addresses the broader unresolved issues posed by the patenting of genetic materials that are central to dealing with the tension between the patenting and competition schemes, namely distinguishing between what has already been 'discovered' and economically useful innovations (including the thresholds for novelty and non-obviousness), the exclusion of some subject matter from patenting and the restrictions on access to genetic resources to facilitate further innovation. The possible solutions of raising the threshold patenting standards, taking advantage of international intellectual property law developments and compulsory licensing are examined as ways to ameliorate the possibly detrimental consequences of current genetic material patenting practices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
There are times when people feel compelled to stand up and articulate their group's shortcomings, an act that carries with it enormous social risks. Indeed, a mechanistic reading of social identity theory might lead one to believe that ingroup critics are doomed to face hostility because they are attacking a fundamental part of people's self-concept. But often ingroup critics are doing more than attacking their group — they are trying to incite positive change. Criticism is the cornerstone of protest, and it is difficult to imagine how a group can be reinvigorated, reinvented, or reformed without some process of critical self-reflection. Thus, although the ingroup critic might create tension within the group, it is possible that internal criticism could be seen by other group members as beneficial in terms of promoting positive change and stimulating innovation, creativity, and flexibility in decision making. In this talk I examine the 'identity rules' that ingroup critics need to follow to avoid defensiveness, and look at empirical evidence of how factors such as language, the intergroup context, and choice of audience shape people's attributions regarding criticism and their subsequent evaluations of critics.
Resumo:
The combined approach of the molecular-kinetic and hydrodynamic theories for description of the motion of three-phase gas-liquid-solid contact lines has been examined using the Wilhelmy plate method. The whole dynamic meniscus has been divided into molecular, hydrodynamic, and static-like regions. The Young-Laplace equation and the molecular-kinetic and hydrodynamic dewetting theories have been applied to describe the meniscus profiles and contact angle. The dissipative forces accompanying the dynamic dewetting have also been investigated. The experiments with a Wilhelmy plate made from an acrylic polymer sheet were carried out using a computerized apparatus for contact angle analysis (OCA 20, DataPhysics, Germany). The extrapolated dynamic contact angle versus velocity of the three-phase contact line for Milli-Q water and 5 x 10(-4) M SDBS solution was experimentally obtained and compared with the combined MHD models with low and moderate Reynolds numbers. The models predict similar results for the extrapolated contact angle. SDBS decreases the equilibrium contact angle and increases the molecular jumping length but does not affect the molecular frequency significantly. The hydrodynamic deformation of the meniscus, viscous dissipation, and friction were also influenced by the SDBS surfactant. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This article examines the policy cycle and vernacular globalization in the context of higher education reform in Vietnam. Through an analysis of the development of the Vietnam National University - Hochiminh City as part of the post-1986 reconstruction of Vietnamese higher education, the article considers the complex interrelationship between globalized policy discourses, national interests and history in Vietnam, and the specific politics of policy implementation within one institution. Vietnam National University - Hochiminh City was created through an amalgamation of a number of smaller universities, and against the backdrop of social and economic restructuring aimed at promoting industrialization and a market orientation within socialist governance. The article reveals the dynamic tension between these local and global influences on higher education policy and practice, and more specifically, the dilemmas associated with top-down policy implementation when a new organization consists of older organizations with powerful provenance and reputations. In so doing the article demonstrates the necessity to globalize policy theory.
Resumo:
Vertical direct chill (VDC) casting of aluminium alloys is a mature process that has evolved over many decades through gradual change to both equipment design and casting practice. Today, air-pressurised, continuous lubrication, hot top mould systems with advanced station automation are selected as the process of choice for producing extrusion billet. Specific sets of operating parameters are employed on these stations for each alloy and size combination to produce optimal billet quality. The designs and parameters are largely derived from past experience and accumulated know-how. Recent experimental work at the University of Queensland has concentrated on understanding the way in which the surface properties of liquid aluminium alloys, e.g., surface tension, wetting angle and oxide skin strength, influence the size and shape of the naturally-stab le meniscus for a given alloy, temperature and atmosphere. The wide range of alloy-and condition-dependent values measured has led to the consideration of how these properties impact the stability of the enforced molten metal meniscus within the hot top mould cavity. The actual shape and position of the enforced meniscus is controlled by parameters such as the upstream conduction distance (UCD) from sub-mould cooling and the molten metal head. The degree of deviation of this actual meniscus from the predicted stable meniscus is considered to be a key driver in surface defect formation. This paper reports on liquid alloy property results and proposes how this knowledge might be used to better design VDC mould systems and casting practices.
Resumo:
This paper describes the application of two relatively new diagnostic techniques for the determination of insulation condition in aged transformers. The techniques are (a) measurements of interfacial polarization spectra by a DC method and (b) measurements of molecular weight and its distribution by gel permeation chromatography. Several other electrical properties of the cellulose polymer were also investigated. Samples were obtained from a retired power transformer and they were analysed by the developed techniques. Six distribution transformers were also tested with the interfacial polarization spectra measurement technique, and the molecular weight of paper/pressboard samples from these transformers were also measured by the gel permeation chromatography. The variation of the results through different locations in a power transformer is discussed in this paper. The possible correlation between different measured properties was investigated and discussed in this paper.
Resumo:
This paper describes the analysis of accelerated aged insulation samples to investigate the degradation processes observed in the insulation from aged transformers. Short term accelerated ageing experiments were performed on paper wrapped insulated conductors and on pressboard samples. The condition of aged insulation samples was investigated by two relatively new diagnostic techniques: (a) measurements of interfacial polarization spectra by a DC method (b) measurements of molecular weight and its distribution by gel permeation chromatography. Several other electrical properties of the paper/pressboard samples were also studied. Possible correlations have been investigated among the different measured properties. The GPC results have been used to predict how molecular weights change with temperature and time.
Resumo:
We describe a method for multiple indicator dilution studies in the isolated perfused human placental lobule developed to investigate the relationships between changes in pressure and flow and solute clearance. A peripheral lobule of a human placenta is perfused with a tissue culture-based medium and the perfusate oxygen tension, arterial and venous pressures, pH and perfusion temperature continuously monitored by a computerized system. Flow rates are readily changed. Bolus injections of vascular, extracellular and water space markers, and study compounds can be made into either maternal or fetal circulations, and precisely timed outflow fractions can be collected with computer-controlled fraction collectors, allowing simultaneous determination of concentration-time profiles of each marker. (C) 1997 Elsevier Science Inc.
Resumo:
Sediment mobility measurements with a horizontal sand bed under non-breaking waves are reported. Conditions include no seepage and steady downward seepage corresponding to head gradients up to 2.5. The results indicate that infiltration tends to inhibit sediment mobility for a horizontal bcd of 0.2 mm quartz sand exposed to moderated wave induced bed shear stresses. The effect is weak for the parameter range of the present study. The two opposing effects of shear stress increase due to boundary layer thinning and the stabilizing downward drag are successfully accounted for through the modified Shields parameter of Nielsen [Nielsen, P., 1997. Coastal groundwater dynamics. Proc. Coastal Dynamics '97, Plymouth, ASCE, Dp, 546-555] using coefficients derived from independent studies. That is, from the shear stress experiments of Conley [Conley, D.C., 1993. Ventilated oscillatory boundary layers. PhD Thesis, University of California, San Diego, 74 pp.] and the slope stability experiments of Martin and Aral [Martin, C.S. and M.M. Aral, 1971. Seepage force on interfacial bed particles. J. Hydraulics Div., proc. ASCE, Vol. 97, No. Hy7, pp. 1081-1100]. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.