77 resultados para Eigenvalue of a graph


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theta graph is a graph consisting of three pairwise internally disjoint paths with common end points. Methods for decomposing the complete graph K-nu into theta graphs with fewer than ten edges are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formal specifications can precisely and unambiguously define the required behavior of a software system or component. However, formal specifications are complex artifacts that need to be verified to ensure that they are consistent, complete, and validated against the requirements. Specification testing or animation tools exist to assist with this by allowing the specifier to interpret or execute the specification. However, currently little is known about how to do this effectively. This article presents a framework and tool support for the systematic testing of formal, model-based specifications. Several important generic properties that should be satisfied by model-based specifications are first identified. Following the idea of mutation analysis, we then use variants or mutants of the specification to check that these properties are satisfied. The framework also allows the specifier to test application-specific properties. All properties are tested for a range of states that are defined by the tester in the form of a testgraph, which is a directed graph that partially models the states and transitions of the specification being tested. Tool support is provided for the generation of the mutants, for automatically traversing the testgraph and executing the test cases, and for reporting any errors. The framework is demonstrated on a small specification and its application to three larger specifications is discussed. Experience indicates that the framework can be used effectively to test small to medium-sized specifications and that it can reveal a significant number of problems in these specifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let K(r, s, t) denote the complete tripartite graph with partite sets of size r, s and t, where r less than or equal to s less than or equal to t. Let D be the graph consisting of a triangle with an edge attached. We show that K(r, s, t) may be decomposed into copies of D if and only if 4 divides rs + st + rt and t less than or equal to 3rs/(r + s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A graph G is a common multiple of two graphs H-1 and H-2 if there exists a decomposition of G into edge-disjoint copies of H-1 and also a decomposition of G into edge-disjoint copies of H-2. In this paper, we consider the case where H-1 is the 4-cycle C-4 and H-2 is the complete graph with n vertices K-n. We determine, for all positive integers n, the set of integers q for which there exists a common multiple of C-4 and K-n having precisely q edges. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cube factorization of the complete graph on n vertices, K-n, is a 3-factorization of & in which the components of each factor are cubes. We show that there exists a cube factorization of & if and only if n equivalent to 16 (mod 24), thus providing a new family of uniform 3 -factorizations as well as a partial solution to an open problem posed by Kotzig in 1979. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let G be a graph that admits a perfect matching. A forcing set for a perfect matching M of G is a subset S of M, such that S is contained in no other perfect matching of G. This notion has arisen in the study of finding resonance structures of a given molecule in chemistry. Similar concepts have been studied for block designs and graph colorings under the name defining set, and for Latin squares under the name critical set. There is some study of forcing sets of hexagonal systems in the context of chemistry, but only a few other classes of graphs have been considered. For the hypercubes Q(n), it turns out to be a very interesting notion which includes many challenging problems. In this paper we study the computational complexity of finding the forcing number of graphs, and we give some results on the possible values of forcing number for different matchings of the hypercube Q(n). Also we show an application to critical sets in back circulant Latin rectangles. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For all odd integers n greater than or equal to 1, let G(n) denote the complete graph of order n, and for all even integers n greater than or equal to 2 let G,, denote the complete graph of order n with the edges of a 1-factor removed. It is shown that for all non-negative integers h and t and all positive integers n, G, can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in G(n). (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let e(1),e(2),... e(n) be a sequence of nonnegative integers Such that the first non-zero term is not one. Let Sigma(i=1)(n) e(i) = (q - 1)/2, where q = p(n) and p is an odd prime. We prove that the complete graph on q vertices can be decomposed into e(1) C-pn-factors, e(2) C-pn (1)-factors,..., and e(n) C-p-factors. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A K-t,K-t-design of order n is an edge-disjoint decomposition of K-n into copies of K-t,K-t. When t is odd, an extended metamorphosis of a K-t,K-t-design of order n into a 2t-cycle system of order n is obtained by taking (t - 1)/2 edge-disjoint cycles of length 2t from each K-t,K-t block, and rearranging all the remaining 1-factors in each K-t,K-t block into further 2t-cycles. The 'extended' refers to the fact that as many subgraphs isomorphic to a 2t-cycle as possible are removed from each K-t,K-t block, rather than merely one subgraph. In this paper an extended metamorphosis of a K-t,K-t-design of order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is given for all odd t > 3. A metamorphosis of a 2-fold K-t,K-t-design of any order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is also given, for all odd t > 3. (The case t = 3 appeared in Ars Combin. 64 (2002) 65-80.) When t is even, the graph K-t,K-t is easily seen to contain t/2 edge-disjoint cycles of length 2t, and so the metamorphosis in that case is straightforward. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we are concerned with determining values of lambda, for which there exist positive solutions of the nonlinear eigenvalue problem [GRAPHICS] where a, b, c, d is an element of [0, infinity), xi(i) is an element of (0, 1), alpha(i), beta(i) is an element of [0 infinity) (for i is an element of {1, ..., m - 2}) are given constants, p, q is an element of C ([0, 1], (0, infinity)), h is an element of C ([0, 1], [0, infinity)), and f is an element of C ([0, infinity), [0, infinity)) satisfying some suitable conditions. Our proofs are based on Guo-Krasnoselskii fixed point theorem. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Steiner trade spectrum of a simple graph G is the set of all integers t for which there is a simple graph H whose edges can be partitioned into t copies of G in two entirely different ways. The Steiner trade spectra of complete partite graphs were determined in all but a few cases in a recent paper by Billington and Hoffman (Discrete Math. 250 (2002) 23). In this paper we resolve the remaining cases. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wigner functions play a central role in the phase space formulation of quantum mechanics. Although closely related to classical Liouville densities, Wigner functions are not positive definite and may take negative values on subregions of phase space. We investigate the accumulation of these negative values by studying bounds on the integral of an arbitrary Wigner function over noncompact subregions of the phase plane with hyperbolic boundaries. We show using symmetry techniques that this problem reduces to computing the bounds on the spectrum associated with an exactly solvable eigenvalue problem and that the bounds differ from those on classical Liouville distributions. In particular, we show that the total "quasiprobability" on such a region can be greater than 1 or less than zero. (C) 2005 American Institute of Physics.