154 resultados para Bleaching dynamic. Abiotic parameters. Coral coverage. Maracajaú reefs


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early effects of heat stress on the photosynthesis of symbiotic dinoflagellates (zooxanthellae) within the tissues of a reef-building coral were examined using pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photorespirometry. Exposure of Stylophora pistillata to 33 and 34 degrees C for 4 h resulted in (1) the development of strong non-photochemical quenching (qN) of the chlorophyll fluorescence signal, (2) marked decreases in photosynthetic oxygen evolution, and (3) decreases in optimal quantum yield (F-v/F-m) of photosystern II (PSII), Quantum yield decreased to a greater extent on the illuminated surfaces of coral branches than on lower (shaded) surfaces, and also when high irradiance intensities were combined with elevated temperature (33 degrees C as opposed to 28 degrees C), qN collapsed in heat-stressed samples when quenching analysis was conducted in the absence of oxygen, Collectively, these observations are interpreted as the initiation of photoprotective dissipation of excess absorbed energy as heat (qN) and O-2-dependent electron flow through the Mehler-Ascorbate-Peroxidase cycle (MAP-cycle) following the point at which the rate of light-driven electron transport exceeds the capacity of the Calvin cycle. A model for coral bleaching is proposed whereby the primary site of heat damage in S, pistillata is carboxylation within the Calvin cycle, as has been observed during heat damage in higher plants, Damage to PSII and a reduction in F-v/F-m (i.e. photoinhibition) are secondary effects following the overwhelming of photoprotective mechanisms by light. This secondary factor increases the effect of the primary variable, temperature. Potential restrictions of electron flow in heat-stressed zooxanthellae are discussed with respect to Calvin cycle enzymes and the unusual status of the dinoflagellate Rubisco, Significant features of our model are that (1) damage to PSII is not the initial step in the sequence of heat stress in zooxanthellae, acid (2) light plays a key secondary role in the initiation of the bleaching phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm(-2) h(-1) which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm(-2) h(-1) (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 mu M could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm(-2) h(-1). These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m(-2) h(-1), P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only similar or equal to 11.3% of the nitrogen demand of P. damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium cyanide is being used on reefs in the Asia-Pacific region to capture live fish for the aquarium industry, and to supply a rapidly growing, restaurant-based demand, The effects of cyanide on reef biota have not been fully explored. To investigate its effect on hard corals, we exposed small branch lips of Stylophora pistillata and Acropora aspera to cyanide concentrations estimated to occur during cyanide fishing. Pulse amplitude modulation (PAM) chlorophyll fluorescence techniques were used to examine photoinhibition and photosynthetic electron transport in the symbiotic algae (zooxanthellae) in the tissues of the corals, These measurements were made in situ and in real time using a recently developed submersible PAM fluorometer. In S. pistillata. exposure to cyanide resulted in an almost complete cessation in photosynthetic electron transport rate. Both species displayed marked decreases in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) (dark-adapted F-v/F-m), following exposure to cyanide, signifying a decrease in photochemical efficiency. Dark-adapted F-v/F-m recovered to normal levels in similar to 6 d, although intense tissue discolouration, a phenomenon well-recognised as coral 'bleaching' was observed during this period, Bleaching was caused by loss of zooxanthellae from the coral tissues, a well-recognised sub-lethal stress response of corals. Using the technique of chlorophyll fluorescence quenching analysis, corals exposed to cyanide did not show light activation of Calvin cycle enzymes and developed high levels of non-photochemical quenching (q(N)), signifying the photoprotective dissipation of excess light as heat, These features are symptomatic of the known properties of cyanide as an inhibitor of enzymes of the Calvin cycle. The results of this in situ study show that an impairment of zooxanthellar photosynthesis is; the site of cyanide-mediated toxicity, and is the cue that causes corals to release their symbiotic zooxanthellac following cyanide exposure. This study demonstrates the efficacy of PBM fluorometry as a new tool for in situ stress assessment in zooxanthellate scleractinian corals. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional models describing the relationship between photosynthesis (P) and irradiance (I) do not account for photoacclimation to short-term variation in irradiance. Here we develop and test a model that predicts the rate of photosynthesis under fluctuating irradiances at the scale of days to weeks. Using oxygen respirometry, we measured the rates of change in the P-I model parameters P-max (maximum rate of gross photosynthesis) and I-k (sub-saturation irradiance) of the photo-symbiotic coral Turbinaria mesenterina (Lamarck) following large and small increases and decreases in growth irradiance. We analyse the behaviour of the dynamic P-I model in turbid-water conditions using a dataset of 3-month continuous irradiance as the input variable. In response to upward or downward changes in experimental growth irradiance, I-k values decreased or increased exponentially, reaching new and stable levels within 5-10 days. I-k responded 4 times stronger than P-max to changes in growth irradiance. The kinetics of I-k did not show hysteresis, and changed in similar ways when irradiance was increased or decreased in small or large amounts. This suggests that mechanisms associated with photo-protection during increases in irradiance, and the maximisation of photosynthetic efficiency during decreases in irradiance, are equally potent. On the scale of months, the dynamic P-I model did not predict higher rates of photosynthesis than the static P-I model, but buffered the variation in photosynthesis during periods of reduced irradiance. Fourier analysis indicated that the kinetics of I-k closely matches the main periodicities in daily irradiance (1-2 weeks). The recorded kinetics of photoacclimation in the Turbinaria-zooxanthella symbiosis is comparable to that of free-living phytoplankton and faster than that of higher plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific identity of endosymbiotic dinoflagellates (Symbiodinium spp.) from most zooxanthellate corals is unknown. In a survey of symbiotic cnidarians from the southern Great Barrier Reef (GBR), 23 symbiont types were identified from 86 host species representing 40 genera. A majority (>85%) of these symbionts belong to a single phylogenetic clade or subgenus (C) composed of closely related (as assessed by sequence data from the internal transcribed spacer region and the ribosomal large subunit gene), yet ecologically and physiologically distinct, types. A few prevalent symbiont types, or generalists, dominate the coral community of the southern GBR, whereas many rare and/or specific symbionts, or specialists, are found uniquely within certain host taxa. The comparison of symbiont diversity between southern GBR and Caribbean reefs shows an inverse relationship between coral diversity and symbiont diversity, perhaps as a consequence of more-rapid diversification of Caribbean symbionts. Among clade C types, generalists C1 and C3 are common to both Caribbean and southern GBR symbiont assemblages, whereas the rest are regionally endemic. Possibly because of environmental changes in the Caribbean after geographic isolation through the Quaternary period, a high proportion of Caribbean fauna associate with symbiont taxa from two other distantly related Symbiodinium clades (A and B) that rarely occur in Pacific hosts. The resilience of Porites spp. and the resistance of Montipora digitata to thermal stress and bleaching are partially explained by their association with a thermally tolerant symbiont type, whereas the indiscriminant widespread bleaching and death among certain Pacific corals, during El Nino Southern Oscillation events, are influenced by associations with symbionts possessing higher sensitivity to thermal stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic nutrients play a critical role in determining benthic community structure in tropical seas. This study examined the impact of adding inorganic nutrients (ammonium and phosphate) on the isotopic composition of 2 reef-building corals, Pocillopora damicornis and Heliofungia actiniformis, on the southern Great Barrier Reef. The addition of elevated nutrients to patch reefs that pond at low tide did not perturb the C:N ratio of either species or their symbiotic dinoflagellates. The C:N ratios were significantly higher in material extracted from the skeleton (14.8 +/- 1.50 and 10.8 +/- 1.42) than either host (7.6 +/- 0.87 and 6.0 +/- 0.71) or symbiotic dinoflagellates (5.7 +/- 0.48 and 6.9 +/- 0.66) (P. damicornis and H. actiniformis respectively; 95 confidence intervals). The ratio of acquired N to background N suggests that the added dissolved inorganic nitrogen (DIN) accounted for 50 to 100% of total nitrogen within the tissues of P. damicornis and H. actiniformis at the end of the experiment. The addition of the isotopically depleted nutrients (delta(15) N = 0parts per thousand) to patch reefs significantly decreased delta(15)N from control values of between 3 and 4 to values to below 1 in the case of all compartments, while delta(13)C values were relatively unresponsive to nutrient treatments. These findings suggest that coral delta(15)N has the potential to provide a historical record of the delta(15)N of dissolved nitrogen surrounding reef-building corals and their symbiotic dinoflagellates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guadalupian reefs occur locally in Guangxi, Guizhou, Yunnan and Western Zhejiang, South China. Two types of Guadalupian reefs can be recognized, one is developed in carbonate platforms, e.g. those in the juncture areas of Guangxi, Yunnan and Guizhou; the other occurs in a littoral clastic shelf. The Lengwu reef in Western Zhejiang is a representative of the latter type, which is a major topic of this paper. Lengwu algae-sponge reef, more than one hundred meters in thickness, are composed mainly of sponges, hydrozoans, algae, bryozoans, microbes and lime mud. Reef limestones sit on the mudstone interbedded with fine sandstone of the proximal prodelta facies and are overlain by coarse clasts of the delta front sediments. Lengwu reef displays a lens-shaped relief, dipping and thinning from the reef core, which is remarkably different from the surrounding sediments, showing a protruding relief. Sponges and microbe/algae form bafflestone, bindstone and framestone of the reef core facies. Fore-reef facies is characterized by lithoclastic rudstone and bioclastic packstone. Reef limestone sequence is composed of three cycles and controlled by sea level changes and sediment influx. Such reef is unique among the Guadalupian reefs in South China, but seems similar in some aspects to lwaizaki reef limestones of south Kitakami in Japan. Algae and microbes growing around sponges to form rigid structure in Lengwu reef are a typical feature, which is distinctly different to Guadalupian reefs in a stable platform facies of Guizhou, Yunnan and Guangxi, South China.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wistari Reef. within the southern Great Barrier Reef. is a shallow coral reef platform featuring a very clearly defined leeward accretionary wedge of carbonate sediments. The total global area of shallowly submerged coral reef has been quantified as 255 000 km(2). The question then becomes: What additional area of sediment of significant thickness is associated with the measured shallow reef areas T At Wistari Reef, the leeward sedimentary wedge has an area and a thickness that are roughly equal to the Holocene sediments that have accumulated on the platform. Several important observations can be made from these data. Firstly. the area of significant neritic carbonate sedimentation ( > 1 m/ka) associated with coral reefs is near 500000 km(2). Secondly, the production rate of neritic carbonates at Wistari Reef is almost 50%, less than the accumulation rate needed to obtain the volume of Holocene reef sediments observed. This implies that both production and accumulation neritic carbonate must have been more than a factor of two higher in the early to mid Holocene. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study to be presented is the first to use a new physiological device, the electromagnetic articulograph, to assess articulatory dysfunction in children with acquired brain injury. Two children with dysarthria subsequent to acquired brain injury participated in the study. One child, a female aged 12 years 9 months exhibited a mild-moderate ataxic dysarthria following traumatic head injury while the other, a male aged 13 years 10 months, demonstrated a moderate-severe flaccid-ataxic dysarthria also following traumatic head injury. The speed and accuracy of their tongue movements was assessed using the Carstens AG100 electromagnetic articulograph. Movement trajectories together with a range of quantitative kinematic parameters were estimated during performance of ten repetitions of the lingual consonants /t, s, k/ and consonant cluster /kl/ in the word initial position of single syllable words. A group of ten non-neurologically impaired children served as controls. Examination of the kinematic parameters, including movement trajectories, velocity, acceleration, deceleration, distance travelled and duration of movement, revealed differences in the speed and accuracy of the tongue movements in both children with acquired brain injury compared to those produced by the non-neurologically impaired controls. The results are discussed in relation to contemporary theories of the effects of acquired brain injury on neuromuscular function. The implications of the findings for the treatment of articulatory dysfunction in children with motor speech disorders associated with acquired brain injury are highlighted.