89 resultados para Alternative Dispute Resolution
Resumo:
High-precision Th-230-U-238 ages for a stalagmite from Newdegate Cave in southern Tasmania, Australia define a rare record of precipitation between 100 and 155 ka before the present. The fastest stalagmite growth occurred between 129.2 +/- 1.6 and 122.1 +/- 2.0 ka (similar to 61.5 mm/ka), coinciding with a time of prolific coral growth from Western Australia (128-122 ka). This is the first high-resolution continental record in the Southern Hemisphere that can be compared and correlated with the marine record. Such correlation shows that in southern Australia the onset of full interglacial sea level and the initiation of highest precipitation on land were synchronous. The stalagmite growth rate between 129.2 and 142.2 ka (similar to 5.9 mm/ka) was lower than that between 142.2 and 154.5 ka (similar to 18.7 mm/ka), implying drier conditions during the Penultimate Deglaciation, despite rising temperature and sea level. This asymmetrical precipitation pattern is caused by latitudinal movement of subtropical highs and an associated Westerly circulation, in response to a changing Equator-to-Pole temperature gradient. Both marine and continental records in Australia strongly suggest that the insolation maximum between 126 and 128 ka at 65 degreesN was directly responsible for the maintenance of full Last Interglacial conditions, although the triggers that initiated Penultimate Deglaciation (at similar to 142 ka) remain unsolved. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).
Resumo:
Six alternative structural models of individualism-collectivism are reviewed and empirically compared in a confirmatory factor analysis of questionnaire data from an Australian student sample (N=340). Central to the debate about the structure of this broad social attitude are the issues of (I) polarity (are individualism and collectivism bipolar opposites, or orthogonal factors?) and (2) dimensionality (are individualism and collectivism themselves higher-order constructs subsuming several more specific factors and, if so, what are they?). The data from this Australian sample support a model that represents individualism and collectivism as a higher-order bipolar factor hierarchically subsuming several bipolar reference-group-specific individualisms and collectivisms. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.
Resumo:
It has been previously observed that the intrinsically weak variant GC donor sites, in order to be recognized by the U2-type spliceosome, possess strong consensus sequences maximized for base pair formation with U1 and U5/U6 snRNAs. However, variability in signal strength is a fundamental mechanism for splice site selection in alternative splicing. Here we report human alternative GC-AG introns (for the first time from any species), and show that while constitutive GC-AG introns do possess strong signals at their donor sites, a large subset of alternative GC-AG introns possess weak consensus sequences at their donor sites. Surprisingly, this subset of alternative isoforms shows strong consensus at acceptor exon positions 1 and 2. The improved consensus at the acceptor exon can facilitate a strong interaction with U5 snRNA, which tethers the two exons for ligation during the second step of splicing. Further, these isoforms nearly always possess alternative acceptor sites and always possess alternative acceptor sites and exhibit particularly weak polypyrimidine tracts characteristic of AG-dependent introns. The acceptor exon nucleotides are part of the consensus required for the U2AF(35)-mediated recognition of AG in such introns. Such improved consensus at acceptor exons is not found in either normal or alternative GT-AG introns having weak donor sites or weak polypyrimidine,tracts. The changes probably reflect mechanisms that allow GC-AG alternative intron isoforms to cope with two conflicting requirements, namely an apparent need for differential splice strength to direct the choice of alternative sites and a need for improved donor signals to compensate for the central mismatch base pair (C-A) in the RNA duplex of U1 snRNA and the pre-mRNA. The other important findings include (i) one in every twenty alternative introns is a GC-AG intron, and (ii) three of every five observed GC-AG introns are alternative isoforms.
Resumo:
The oncogene GLI1 is involved in the formation of basal cell carcinoma and other tumor types as a result of the aberrant signaling of the Sonic hedgehog-Patched pathway. In this study, we have identified alternative GLI1 transcripts that differ in their 5' untranslated regions (UTRs) and are generated by exon skipping. These are denoted (alpha -UTR, beta -UTR, and gamma -UTR according to the number of noncoding exons possessed (three, two, and one, respectively). The alpha- and beta -UTR forms represent the major Gli1 transcripts expressed in mouse tissues, whereas the gamma -UTR is present at relatively low levels but is markedly induced in mouse skin treated with 12-O-tetradecanoylphorbol 13-acetate, Transcripts corresponding to the murine beta and gamma forms were identified in human tissues, but significantly, only the gamma -UTR form was present in basal cell carcinomas and in proliferating cultures of a keratinocyte cell line. Flow cytometry analysis determined that the gamma -UTR variant expresses a heterologous reporter gene 14-23-fold higher than the alpha -UTR and 5-13-fold higher than the beta -UTR in a variety of cell types. Because expression of the gamma -UTR variant correlates with proliferation, consistent with a role for GLI1 in growth promotion, up-regulation of GLI1 expression through skipping of 5' noncoding exons may be an important tumorigenic mechanism.