80 resultados para Absorption Measurements
Resumo:
The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.
Resumo:
The extended X-ray absorption fine structure spectroscopy (EXAFS) of (ND4)(2)[CU(D2O)(6)](SO4)(2) at 5, 14,100, 200, and 298 K is reported. This indicates that the Cu-O bond lengths of the Cu(D2O)(6)(2+) ion do not change significantly within this temperature range, which contrasts with EPR results and X-ray and neutron diffraction experiments, which imply that two of the Cu-(D2O) bonds converge in length as the temperature is raised. The EXAFS measurements thus confirm that the bond distances yielded by the diffraction experiments refer to the average positions of ligands involved in a dynamic equilibrium in which the directions of the long and intermediate bonds of the Jahn-Teller distorted Cu(D2O)(6)(2+) ion are interchanged in the crystal lattice. Analysis of the displacement parameters is consistent with this interpretation, as are the wave functions calculated using a model involving Jahn-Teller vibronic coupling and the influence of lattice strain interactions.
Resumo:
Shock-tunnel experiments have been performed to measure the effect on skin-friction drag in a supersonic combustor of flow disturbances induced by hydrogen fuel injection transverse to the airstream. Constant-area, circular cross section combustors of lengths varying up to 0.52 m were employed. The experiments were done at a stagnation enthalpy of 7.2 MJ . kg(-1) and a Mach number of 4.3, with a boundary layer that was turbulent downstream of the 0.14-m station in the combustors. Combustor skin-friction drag was measured by a method based on the stress wave force balance, the method being validated by agreement between fuel-off skin-friction drag measurements and predictions using existing skin-friction theories. When fuel was injected, it was found that the drag remained at fuel-off values. Thus, the streamwise vortices and other flow disturbances induced by the fuel injection, mixing, and combustion, which are expected to be present in a scramjet combustor, did not influence the skin-friction drag of the combustors.
Resumo:
Concerns have been raised about the reproducibility of brachial artery reactivity (BAR), because subjective decisions regarding the location of interfaces may influence the measurement of very small changes in lumen diameter. We studied 120 consecutive patients with BAR to address if an automated technique could be applied, and if experience influenced reproducibility between two observers, one experienced and one inexperienced. Digital cineloops were measured automatically, using software that measures the leading edge of the endothelium and tracks this in sequential frames and also manually, where a set of three point-to-point measurements were averaged. There was a high correlation between automated and manual techniques for both observers, although less variability was present with expert readers. The limits of agreement overall for interobserver concordance were 0.13 +/-0.65 mm for the manual and 0.03 +/-0.74 mm for the automated measurement. For intraobserver concordance, the limits of agreement were -0.07 +/-0.38 mm for observer 1 and -0.16 +/-0.55 mm for observer 2. We concluded that BAR measurements were highly concordant between observers, although more concordant using the automated method, and that experience does affect concordance. Care must be taken to ensure that the same segments are measured between observers and serially.
Resumo:
A mechanical electroscope based on a change in the resonant frequency of a cantilever one micron in size in the presence of charge has recently been fabricated. We derive the decoherence rate of a charge superposition during measurement with such a device using a master equation theory adapted from quantum optics. We also investigate the information produced by such a measurement, using a quantum trajectory approach. Such instruments could be used in mesoscopic electronic systems, and future solid-state quantum computers, so it is useful to know how they behave when used to measure quantum superpositions of charge.
Resumo:
It is not possible to make measurements of the phase of an optical mode using linear optics without introducing an extra phase uncertainty. This extra phase variance is quite large for heterodyne measurements, however it is possible to reduce it to the theoretical limit of log (n) over bar (4 (n) over bar (2)) using adaptive measurements. These measurements are quite sensitive to experimental inaccuracies, especially time delays and inefficient detectors. Here it is shown that the minimum introduced phase variance when there is a time delay of tau is tau/(8 (n) over bar). This result is verified numerically, showing that the phase variance introduced approaches this limit for most of the adaptive schemes using the best final phase estimate. The main exception is the adaptive mark II scheme with simplified feedback, which is extremely sensitive to time delays. The extra phase variance due to time delays is considered for the mark I case with simplified feedback, verifying the tau /2 result obtained by Wiseman and Killip both by a more rigorous analytic technique and numerically.
Resumo:
Effluent water from shrimp ponds typically contains elevated concentrations of dissolved nutrients and suspended particulates compared to influent water. Attempts to improve effluent water quality using filter feeding bivalves and macroalgae to reduce nutrients have previously been hampered by the high concentration of clay particles typically found in untreated pond effluent. These particles inhibit feeding in bivalves and reduce photosynthesis in macroalgae by increasing effluent turbidity. In a small-scale laboratory study, the effectiveness of a three-stage effluent treatment system was investigated. In the first stage, reduction in particle concentration occurred through natural sedimentation. In the second stage, filtration by the Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), further reduced the concentration of suspended particulates, including inorganic particles, phytoplankton, bacteria, and their associated nutrients. In the final stage, the macroalga, Gracilaria edulis (Gmelin) Silva, absorbed dissolved nutrients. Pond effluent was collected from a commercial shrimp farm, taken to an indoor culture facility and was left to settle for 24 h. Subsamples of water were then transferred into laboratory tanks stocked with oysters and maintained for 24 h, and then transferred to tanks containing macroalgae for another 24 h. Total suspended solid (TSS), chlorophyll a, total nitrogen (N), total phosphorus (P), NH4+, NO3-, and PO43-, and bacterial numbers were compared before and after each treatment at: 0 h (initial); 24 h (after sedimentation); 48 h (after oyster filtration); 72 h (after macroalgal absorption). The combined effect of the sequential treatments resulted in significant reductions in the concentrations of all parameters measured. High rates of nutrient regeneration were observed in the control tanks, which did not contain oysters or macroalgae. Conversely, significant reductions in nutrients and suspended particulates after sedimentation and biological treatment were observed. Overall, improvements in water quality (final percentage of the initial concentration) were as follows: TSS (12%); total N (28%); total P (14%); NH4+ (76%); NO3- (30%); PO43-(35%); bacteria (30%); and chlorophyll a (0.7%). Despite the probability of considerable differences in sedimentation, filtration and nutrient uptake rates when scaled to farm size, these results demonstrate that integrated treatment has the potential to significantly improve water quality of shrimp farm effluent. (C) 2001 Elsevier Science B.V. All rights reserved.
The relative importance of luninal and systemic signals in the control of intestinal iron absorption