79 resultados para óxidos de Fe e de Al
Resumo:
The effect of strontium (Sr), antimony (Sb) and phosphorus (P) on nucleation and growth mode of the eutectic in hypoeutectic Al-10 mass%Si alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from a hypoeutectic Al-10 mass%Si base alloy, adding different levels of strontium, antimony and phosphorus for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites, the solidification mode of the eutectic could be determined. The results of these studies show that the eutectic nucleation mode, and subsequent growth mode, is strongly dependent on additive elements. The EBSD mapping results indicate that the eutectic grew from the primary phase in unmodified and phosphorus-containing alloys. When the eutectic was modified by strontium or antimony, eutectic grains nucleated and grew separately from the primary dendrites.
Resumo:
The influence of sodium (Na) on nucleation and growth of the Al-Si eutectic in a commercial hypoeutectic Al-Si-Cu-Mg foundry alloy has been investigated. The microstructural evolution during eutectic solidification was studied by a quenching technique. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites by EBSD, the eutectic solidification mode could be determined. The results show that the eutectic solidification starts near the mould wall and evolves with front growth opposite the thermal gradient on a macro-scale, and on a micro-scale with independent heterogeneous nucleation of eutectic grains in interdendritic spaces. Na-modified alloys therefore behave significantly differently from those modified by other elemental additions.
Resumo:
Nucleation and growth of the eutectic, in hypoeutectic Al-Si foundry alloys has been investigated by the electron backscatter diffraction (EBSD) mapping technique using a scanning electron microscope (SEM). Sample preparation procedures for optimizing mapping have been developed. To obtain a sufficiently smooth surface from a cast Al-Si eutectic microstructure for EBSD mapping, an appropriate preparation technique by ion milling was developed and applied instead of conventional electropolishing. By comparing the orientation of the aluminum in the eutectic to that of the surrounding primary aluminum dendrites, the growth mechanism of the eutectic can be determined. Two different results were found, in isolation or sometimes together, but distinct for different strontium contents: (1) crystallographic orientations of aluminum in eutectic and surrounding primary dendrites are identical, and (2) wide variation in orientations of the aluminum in the eutectic. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Trace elements can have a significant effect on the processing and properties of aluminium alloys, including sintered alloys. As little as 0.07 wt% (100 ppm) lead, tin or indium promotes sintering in an Al-Zn-Mg-Cu alloy produced from mixed elemental powders. This is a liquid phase sintering system and thin liquid films form uniformly throughout the alloy in the presence of the trace elements, but liquid pools develop in their absence. Analytical transmission electron microscopy indicates that the trace elements are confined to the interparticle and grain boundary regions. The sintering enhancement is attributed to the segregation of the microalloying addition to the liquid-vapour interface. Because the microalloying elements have a low surface tension, they lower the effective surface tension of the liquid. This reduces the wetting angle and extends the spreading of the liquid through the matrix. An improvement in sintering results. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The literature indicated that Cu rich Cu-Cr and Cu-Fe alloys have been thoroughly investigated. A number of commercial alloys have been developed and these are used for a variety of applications requiring combinations of high-strength, high-conductivity and resistance to softening. Little evidence was found in the literature that the Cu rich corner of the Cu-Fe-Cr system had previously been investigated for the purpose of developing high-strength, high-conductivity copper alloys resistant to softening. The aim of these present investigations was to explore the possibility that new alloys could be developed that combined the properties of both sets of alloys, ie large precipitation hardening response combined with the ability to stabilise cold worked microstructures to high temperatures while at the same maintain high electrical conductivity. To assess the feasibility of this goal the following alloys were chosen for investigation: Cu-0.7wt%Cr-0.3wt%Fe, Cu-0.7wt%Cr-0.8wt%Fe, Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the mechanical property investigation which indicated that the Cu-0.7wt%Cr-0.3wt%Fe, and Cu-0.7wt%Cr-2.0wt%Fe alloys were worthy of further investigation. (C) 2001 Kluwer Academic Publishers.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. Promising properties have been measured for the following alloys: Cu-0.7wt%Cr-0.3wt%Fe and Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the microstructural characterisation of these alloys and discusses the mechanical and electrical properties of these alloys in terms of their microstructure, particularly the formation of precipitates. These alloys have evinced properties that warrant further investigation. Cost modelling has shown that Cu-0.7wt%Cr-0.3wt%Fe is approximately 25% cheaper to produce than commercial Cu-1%Cr. It has also been shown to be more cost efficient on a yield stress and % IACS per dollar basis. The reason for the cost saving is that the Cu-0.7%Cr-0.3%Fe alloy can be made with low carbon ferro-chrome additions as the source of chromium rather than the more expensive Cu-Cr master-alloy. For applications in which cost is one of the primary materials selection criteria, it is envisaged that there would be numerous applications in both cast and wrought form, where the Cu-0.7%Cr-0.3%Fe alloy would be more suitable than Cu-1%Cr. (C) 2001 Kluwer Academic Publishers.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The aim of the present work was to increase the electrical conductivity and strength of the Cu-0.7wt%Cr-0.3wt%Fe alloy through selective minor additions (less than or equal to0.15 wt%) of elements expected to promote precipitation of dissolved Fe: Ti, B, P, Ni & Y. Such quaternary alloys with reduced Fe in solid solution would be expected to have properties equivalent to or better than those of the Cu-1%Cr reference alloy (Alloy Z). The investigation showed that none of the trace element additions significantly improved the size of the age hardening response or the peak aged electrical conductivity of Alloy A, although further work is required on the influence of Ti. Additions of P and B were detrimental. Other trace additions had little or no effect apart from causing some slight changes to the precipitation kinetics. The mechanical properties of the Cu-0.7%Cr-0.3%Fe alloy made with less expensive high carbon ferrochrome were found to be inferior to those of the equivalent alloy made with low carbon ferrochrome. (C) 2001 Kluwer Academic Publishers.
Resumo:
The aim of this project was to investigate the properties of copper rich Cu-Fe-Cr alloys for the purpose of developing a new cost effective, high-strength, high-conductivity copper alloy. This paper reports on the influence of cold work. The age hardening response of the Cu-0.7%Cr-2.0%Fe alloy was minimal, but the resistance to softening was superior to that reported for any commercial high-strength, high-conductivity (HSHC) copper alloy with comparable mechanical and electrical properties. For example, an excess of 85% of the original hardness of the 40% cold worked alloy is retained after holding at 700 degreesC for 1 hour, whereas commercial HSHC Cu-Fe-P alloys have been reported to soften significantly after 1 hours exposure at less than 500 degreesC. The Cu-0.7Cr-2.0Fe alloy would therefore be expected to be more suitable for applications with a significant risk of exposure to elevated temperatures. Optical microscope examination of cold worked and aged microstructures confirmed the high resistance to recrystallization for Cu-0.7%Cr-2.0%Fe. The Zener-Smith drag term, predicting the pinning effect of second phase particles on dislocations in cold worked microstructures, was calculated using the precipitate characteristics obtained from TEM, WDS and resistivity measurements. The pinning effect of the precipitate dispersions in the peak-aged condition was determined to be essentially equivalent for the Cu-0.7%Cr-0.3%Fe and Cu-0.7%Cr-2.0%Fe alloys. A lower recrystallisation temperature in the Cu-0.7%Cr-0.3%Fe alloy was therefore attributed to faster coarsening kinetics of the secondary precipitates resulting from a higher Cr concentration in the precipitates at lower iron content. (C) 2001 Kluwer Academic Publishers.
Resumo:
In the treatment of atherosclerotic disease, stenting in the presence of a glycoprotein (GP) IIb/IIIa antagonist is becoming an increasingly common procedure. The ‘Do Tirofiban and ReoPro Give Similar Efficacy Trial’ (TARGET) was designed to determine whether the cheaper tirofiban was as effective and safe as abciximab in the prevention of ischaemic events with stenting. Unexpectedly, abciximab was shown to be superior to tirofiban. Tirofiban is a selective GP IIb/IIIa antagonist whereas abciximab has additional anti-inflammatory actions, which may contribute to its superiority.
Resumo:
Friedreich ataxia (FA) Is caused by decreased frataxin expression that results in mitochondrial iron (Fe) overload. However, the role of frataxin in mammalian Fe metabolism remains unclear. In this investigation we examined the function of frataxin in Fe metabolism by implementing a well-characterized model of erythroid differentiation, namely, Friend cells induced using dimethyl sulfoxide (DMSO). We have characterized the changes in frataxin expression compared to molecules that play key roles in Fe metabolism (the transferrin receptor [TfR] and the Fe transporter Nramp2) and hemoglobinization (beta-globin). DMSO induction of hemoglobinization results in a marked decrease in frataxin gene (Frda) expression and protein levels. To a lesser extent, Nramp2 messenger RNA (mRNA) levels were also decreased on erythroid differentiation, whereas TfR and beta-globin mRNA levels increased. Intracellular Fe depletion using desferrioxamine or pyridoxal isonicotinoyl hydrazone, which chelate cytoplasmic or cytoplasmic and mitochondrial Fe pools, respectively, have no effect on frataxin expression. Furthermore, cytoplasmic or mitochondrial Fe loading of induced Friend cells with ferric ammonium citrate, or the heme synthesis inhibitor, succinylacetone, respectively, also had no effect on frataxin expression. Although frataxin has been suggested by others to be a mitochondrial ferritin, the lack of effect of intracellular Fe levels on frataxin expression is not consistent with an Fe storage role. Significantly, protoporphyrin IX down-regulates frataxin protein levels, suggesting a regulatory role of frataxin in Fe or heme metabolism. Because decreased frataxin expression leads to mitochondrial Fe loading in FA, our data suggest that reduced frataxin expression during erythroid differentiation results in mitochondrial Fe sequestration for heme biosynthesis. (C) 2002 by The American Society of Hematology.
Resumo:
The iron(II) complex [Fe(AMN(3)S(3)sarH)](ClO4)(3).3H(2)O (AMN(3)S(3)sarH = 8-ammonio-1-methyl-3,13,16-trithia-6,10,19-triazabicyclo[6.6.6]icosane) has been synthesized and characterized by single crystal structure and spectroscopic methods. The Fe(II)-S(thiaether) bond lengths are short, indicative of a large degree of metal-ligand orbital mixing (pi-acceptor character) of the thiaether ligand. The complex is stable to metal centred oxidation. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The forging characteristics of an Al-Cu-Mg-Si-Sn alloy are examined using it new testing strategy which incorporates a double truncated cone specimen and finite element modelling. This sample geometry produces controlled strain distributions within a single specimen and can readily identify the specific strain required to achieve a specific microstructural event by matching the metallographic data with the strain profiles calculated from finite element software, The friction conditions were determined using the conventional friction ring test, which was evaluated using finite element software. The rheological properties of the alloy, evaluated from compression testing of right cylinders, are similar to the properties of conventional aluminium forgings. A hoop strain develops at the outer diameter of the truncated cones and this leads to pore opening at the outer few millimetres. The porosity is effectively removed when the total strain equals the net compressive strain. The strain profiles that develop in the truncated cones are largely independent of the processing temperature and the strain rate although the strain required for pore closure increases as the forging temperature is reduced. This suggests that the microstructure and the strain rate sensitivity may also be important factors controlling pore behaviour. (C) 2002 Elsevier Science B.V. All rights reserved.