652 resultados para model library


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particle-based lattice solid model developed to study the physics of rocks and the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction between particles. The model provides a means for studying the causes of seismic wave attenuation, as well as frictional heat generation, fault zone evolution, and localisation phenomena. A modified velocity-Verlat scheme that allows friction to be precisely modelled is developed. This is a difficult computational problem given that a discontinuity must be accurately simulated by the numerical approach (i.e., the transition from static to dynamical frictional behaviour). This is achieved using a half time step integration scheme. At each half time step, a nonlinear system is solved to compute the static frictional forces and states of touching particle-pairs. Improved efficiency is achieved by adaptively adjusting the time step increment, depending on the particle velocities in the system. The total energy is calculated and verified to remain constant to a high precision during simulations. Numerical experiments show that the model can be applied to the study of earthquake dynamics, the stick-slip instability, heat generation, and fault zone evolution. Such experiments may lead to a conclusive resolution of the heat flow paradox and improved understanding of earthquake precursory phenomena and dynamics. (C) 1999 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow concept describes a model of enjoyment that has relevance for understanding participation and experience across a wide range of activities (Csikszentmihalyi, 1997). The basic premise of the flow concept is that when challenges and skills are simultaneously balanced and extending the individual, a state of total absorption can occur. Research by Jackson and colleagues has examined the utility of the flow concept to understanding participation and performance in sport settings. Recently, Jackson and Eklund have examined flow in a range of performance settings: sport, exercise, dance, creative and performing arts, and music. In this paper, we present descriptive and construct validity data on how participants in these activities experienced flow, as assessed by the recently revised flow scales: The Dispositional Flow Scale-2 (DFS-2) and Flow State Scale-2 (FSS-2) (Jackson & Eklund, 2002). The fmdings will be discussed in relation to the utility of the flow concept to understanding participation across performance settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the performance of EASI algorithm and the proposed EKENS algorithm for linear and nonlinear mixtures. The proposed EKENS algorithm is based on the modified equivariant algorithm and kernel density estimation. Theory and characteristic of both the algorithms are discussed for blind source separation model. The separation structure of nonlinear mixtures is based on a nonlinear stage followed by a linear stage. Simulations with artificial and natural data demonstrate the feasibility and good performance of the proposed EKENS algorithm.