74 resultados para music composition
Resumo:
In recent years qualitative research methods have been adopted within in the field of music education and have received widespread acceptance. However, the theoretical framework provided by ethnomethodology (Garfinkel, 1974, in R. Turner, Ethnomethodology , Penguin, Middlesex, UK) and the tools of conversational analysis (Sacks, 1992, Lectures on Conversation , edited by Gail Jefferson, Blackwell, Oxford, UK) have, to this point, been overlooked by researchers in the field of music education. In this paper I argue that the application of ethnomethodological and conversation analytical approaches in the field of research in music education can provide fresh insights into the work of music teachers and how this work is accomplished in institutional settings. Here I demonstrate how a conversation analytical perspective drawing on an ethnomethodological framework might be used to investigate transcripts of audio-recorded interview talk. This type of analysis can illuminate aspects of members' roles in relation to, and perceptions about music education in school settings that might be overlooked in other types of analysis. A conversation analytical approach to the examination of talk-in-interaction explicates in fine-grained detail how members orient to matters at hand in the context of research settings, as well as revealing features of the cultural world of music teaching. Further application of the approach to research problems in other school settings, I argue, will inform the field of music education in ways yet to be realised.
Resumo:
Conventional whole-body single frequency bioelectrical impedance analysis (BIA) of body composition typically uses height as a surrogate measure of conductor length. A new method of BIA analysis for the prediction of body cell mass (BCM) and extracellular water (ECW, as % body weight) not using height has been introduced-the Soft Tissue Analyser (STA(TM), Akern Sri, Florence, Italy)-making it ideal for use in subjects where measurement of height is difficult or impossible. The performance of the new analytical method in predicting BCM and ECW in 139 normal control subjects was assessed by comparison with reference data obtained from a four-component (4-C) model of body composition and with predictions obtained from conventional BIA analysis. Both predicted BCM and ECW were strongly (r = 0.82, SEE = 6.3 kg and 0.89, SEE = 1.3 kg respectively) correlated with the corresponding 4-C model measurements although differing significantly from the lines of identity (P < 0.0001). Fat-free mass, calculated from STA estimates of BCM and ECW, was better predicted (r = 0.91, SEE = 5.6 kg). The significant differences in STA-group mean values for BCM and ECW and wide limits of agreement compared with the reference data indicate that the method cannot be used with confidence for prediction of these body compartments despite the obvious advantage of not requiring an accurate measurement of height. (C) 2001 Harcourt Publishers Ltd.
Resumo:
This investigation evaluated the effects of oral beta -Hydroxy-beta -Methylbutyrate (HMB) supplementation on training responses in resistance-trained male athletes who were randomly administered HMB in standard encapsulation (SH), HMB in time release capsule (TRH), or placebo (P) in a double-blind fashion. Subjects ingested 3 g (.) day(-1) of HMB; or placebo for 6 weeks. Tests were conducted pre-supplementation and following 3 and 6 weeks of supplementation. The testing battery assessed body mass, body composition (using dual energy x-ray absorptiometry), and 3-repetition maximum isoinertial strength, plus biochemical parameters, including markers of muscle damage and muscle protein turnover. While the training and dietary intervention of the investigation resulted in significant strength gains (p < .001) and an increase in total lean mass (p =.01), HMB administration had no influence on these variables. Likewise, biochemical markers of muscle protein turnover and muscle damage were also unaffected by HMB supplementation. The data indicate that 6 weeks of HMB supplementation in either SH or TRH form does not influence changes in strength and body composition in response to resistance training in strength-trained athletes.
Resumo:
Complete sequences were obtained for the coding portions of the mitochondrial (mt) genomes of Schistosoma mansoni (NMRI strain, Puerto Rico; 14415 bp), S. japonicum (Anhui strain, China; 14085 bp) and S. mekongi (Khong Island, Laos; 14072 bp). Each comprises 36 genes: 12 protein-encoding genes (cox1-3, nad1-6, nad4L, atp6 and cob); two ribosomal RNAs, rrnL (large subunit rRNA or 16S) and rrnS (small subunit rRNA or 12S); as well as 22 transfer RNA (tRNA) genes. The atp8 gene is absent. A large segment (9.6 kb) of the coding region (comprising 14 tRNAs, eight complete and two incomplete protein-encoding genes) for S. malayensis (Baling, Malaysian Peninsula) was also obtained. Each genome also possesses a long non-coding region that is divided into two parts (a small and a large non-coding region, the latter not fully sequenced in any species) by one or more tRNAs. The protein-encoding genes are similar in size, composition and codon usage in all species except for cox1 in S. mansoni (609 aa) and cox2 in S. mekongi (219 an), both of which are longer than homologues in other species. An unexpected finding in all the Schistosoma species was the presence of a leucine zipper motif in the nad4L gene. The gene order in S. mansoni is strikingly different from that seen in the S. japonicum group and other flatworms. There is a high level of identity (87-94% at both the nucleotide and amino acid levels) for all protein-encoding genes of S. mekongi and S. malayensis. The identity between genes of these two species and those of S. japonicum is less (56-83% for amino acids and 73-79 for nucleotides). The identity between the genes of S. mansoni and the Asian schistosomes is far less (33-66% for amino acids and 54-68% for nucleotides), an observation consistent with the known phylogenetic distance between S. mansoni and the other species. (C) 2001 Elsevier Science B.V. All rights reserved.