58 resultados para model-based clustering
Resumo:
A mixture model incorporating long-term survivors has been adopted in the field of biostatistics where some individuals may never experience the failure event under study. The surviving fractions may be considered as cured. In most applications, the survival times are assumed to be independent. However, when the survival data are obtained from a multi-centre clinical trial, it is conceived that the environ mental conditions and facilities shared within clinic affects the proportion cured as well as the failure risk for the uncured individuals. It necessitates a long-term survivor mixture model with random effects. In this paper, the long-term survivor mixture model is extended for the analysis of multivariate failure time data using the generalized linear mixed model (GLMM) approach. The proposed model is applied to analyse a numerical data set from a multi-centre clinical trial of carcinoma as an illustration. Some simulation experiments are performed to assess the applicability of the model based on the average biases of the estimates formed. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.
Resumo:
We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University; on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and Larson (1998). We explore the predictive power of a differential multi-mode version of the pom-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (1999), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.
Resumo:
We focus on mixtures of factor analyzers from the perspective of a method for model-based density estimation from high-dimensional data, and hence for the clustering of such data. This approach enables a normal mixture model to be fitted to a sample of n data points of dimension p, where p is large relative to n. The number of free parameters is controlled through the dimension of the latent factor space. By working in this reduced space, it allows a model for each component-covariance matrix with complexity lying between that of the isotropic and full covariance structure models. We shall illustrate the use of mixtures of factor analyzers in a practical example that considers the clustering of cell lines on the basis of gene expressions from microarray experiments. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Low concentrate density from wet drum magnetic separators in dense medium circuits can cause operating difficulties due to inability to obtain the required circulating medium density and, indirectly, high medium solids losses. The literature is almost silent on the processes controlling concentrate density. However, the common name for the region through which concentrate is discharged-the squeeze pan gap-implies that some extrusion process is thought to be at work. There is no model of magnetics recovery in a wet drum magnetic separator, which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was done using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 turn diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in this work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. It is proposed, based both on the experimental observations of the present work and on observations reported in the literature, that the process controlling magnetic separator concentrate density is one of drainage. Such a process should be able to be defined by an initial moisture, a drainage rate and a drainage time, the latter being defined by the volumetric flowrate and the volume within the drainage zone. The magnetics can be characterised by an experimentally derived ultimate drainage moisture. A model based on these concepts and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to be a good fit to data over concentrate solids content values from 40% solids to 80% solids and for both magnetite and ferrosilicon feeds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Loss of magnetic medium solids from dense medium circuits is a substantial contributor to operating cost. Much of this loss is by way of wet drum magnetic separator effluent. A model of the separator would be useful for process design, optimisation and control. A review of the literature established that although various rules of thumb exist, largely based on empirical or anecdotal evidence, there is no model of magnetics recovery in a wet drum magnetic separator which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was therefore carried out using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 mm diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in the work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. Observations carried out as an adjunct to this work, as well as magnetic theory, suggests that the capture of magnetic particles in the wet drum magnetic separator is by a flocculation process. Such a process should be defined by a flocculation rate and a flocculation time; the latter being defined by the volumetric flowrate and the volume within the separation zone. A model based on this concept and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to provide a satisfactory fit to the data over three orders of magnitude of magnetics loss. (C) 2003 Elsevier Science BY. All rights reserved.
Resumo:
This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In a previous paper, Hoornaert et al. (Powder Technol. 96 (1998); 116-128) presented data from granulation experiments performed in a 50 L Lodige high shear mixer. In this study that same data was simulated with a population balance model. Based on an analysis of the experimental data, the granulation process was divided into three separate stages: nucleation, induction, and coalescence growth. These three stages were then simulated separately, with promising results. it is possible to derive a kernel that fit both the induction and the coalescence growth stage. Modeling the nucleation stage proved to be more challenging due to the complex mechanism of nucleus formation. From this work some recommendations are made for the improvement of this type of model.
Resumo:
We examine the event statistics obtained from two differing simplified models for earthquake faults. The first model is a reproduction of the Block-Slider model of Carlson et al. (1991), a model often employed in seismicity studies. The second model is an elastodynamic fault model based upon the Lattice Solid Model (LSM) of Mora and Place (1994). We performed simulations in which the fault length was varied in each model and generated synthetic catalogs of event sizes and times. From these catalogs, we constructed interval event size distributions and inter-event time distributions. The larger, localised events in the Block-Slider model displayed the same scaling behaviour as events in the LSM however the distribution of inter-event times was markedly different. The analysis of both event size and inter-event time statistics is an effective method for comparative studies of differing simplified models for earthquake faults.
Resumo:
Background Reliable information on causes of death is a fundamental component of health development strategies, yet globally only about one-third of countries have access to such information. For countries currently without adequate mortality reporting systems there are useful models other than resource-intensive population-wide medical certification. Sample-based mortality surveillance is one such approach. This paper provides methods for addressing appropriate sample size considerations in relation to mortality surveillance, with particular reference to situations in which prior information on mortality is lacking. Methods The feasibility of model-based approaches for predicting the expected mortality structure and cause composition is demonstrated for populations in which only limited empirical data is available. An algorithm approach is then provided to derive the minimum person-years of observation needed to generate robust estimates for the rarest cause of interest in three hypothetical populations, each representing different levels of health development. Results Modelled life expectancies at birth and cause of death structures were within expected ranges based on published estimates for countries at comparable levels of health development. Total person-years of observation required in each population could be more than halved by limiting the set of age, sex, and cause groups regarded as 'of interest'. Discussion The methods proposed are consistent with the philosophy of establishing priorities across broad clusters of causes for which the public health response implications are similar. The examples provided illustrate the options available when considering the design of mortality surveillance for population health monitoring purposes.
Resumo:
The ‘leading coordinate’ approach to computing an approximate reaction pathway, with subsequent determination of the true minimum energy profile, is applied to a two-proton chain transfer model based on the chromophore and its surrounding moieties within the green fluorescent protein (GFP). Using an ab initio quantum chemical method, a number of different relaxed energy profiles are found for several plausible guesses at leading coordinates. The results obtained for different trial leading coordinates are rationalized through the calculation of a two-dimensional relaxed potential energy surface (PES) for the system. Analysis of the 2-D relaxed PES reveals that two of the trial pathways are entirely spurious, while two others contain useful information and can be used to furnish starting points for successful saddle-point searches. Implications for selection of trial leading coordinates in this class of proton chain transfer reactions are discussed, and a simple diagnostic function is proposed for revealing whether or not a relaxed pathway based on a trial leading coordinate is likely to furnish useful information.
Resumo:
Many developing south-east Asian governments are not capturing full rent from domestic forest logging operations. Such rent losses are commonly related to institutional failures, where informal institutions tend to dominate the control of forestry activity in spite of weakly enforced regulations. Our model is an attempt to add a new dimension to thinking about deforestation. We present a simple conceptual model, based on individual decisions rather than social or forest planning, which includes the human dynamics of participation in informal activity and the relatively slower ecological dynamics of changes in forest resources. We demonstrate how incumbent informal logging operations can be persistent, and that any spending aimed at replacing the informal institutions can only be successful if it pushes institutional settings past some threshold. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper considers a model-based approach to the clustering of tissue samples of a very large number of genes from microarray experiments. It is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. Frequently in practice, there are also clinical data available on those cases on which the tissue samples have been obtained. Here we investigate how to use the clinical data in conjunction with the microarray gene expression data to cluster the tissue samples. We propose two mixture model-based approaches in which the number of components in the mixture model corresponds to the number of clusters to be imposed on the tissue samples. One approach specifies the components of the mixture model to be the conditional distributions of the microarray data given the clinical data with the mixing proportions also conditioned on the latter data. Another takes the components of the mixture model to represent the joint distributions of the clinical and microarray data. The approaches are demonstrated on some breast cancer data, as studied recently in van't Veer et al. (2002).
Resumo:
Model transformations are an integral part of model-driven development. Incremental updates are a key execution scenario for transformations in model-based systems, and are especially important for the evolution of such systems. This paper presents a strategy for the incremental maintenance of declarative, rule-based transformation executions. The strategy involves recording dependencies of the transformation execution on information from source models and from the transformation definition. Changes to the source models or the transformation itself can then be directly mapped to their effects on transformation execution, allowing changes to target models to be computed efficiently. This particular approach has many benefits. It supports changes to both source models and transformation definitions, it can be applied to incomplete transformation executions, and a priori knowledge of volatility can be used to further increase the efficiency of change propagation.
Resumo:
Finite mixture models are being increasingly used to model the distributions of a wide variety of random phenomena. While normal mixture models are often used to cluster data sets of continuous multivariate data, a more robust clustering can be obtained by considering the t mixture model-based approach. Mixtures of factor analyzers enable model-based density estimation to be undertaken for high-dimensional data where the number of observations n is very large relative to their dimension p. As the approach using the multivariate normal family of distributions is sensitive to outliers, it is more robust to adopt the multivariate t family for the component error and factor distributions. The computational aspects associated with robustness and high dimensionality in these approaches to cluster analysis are discussed and illustrated.