70 resultados para human growth hormone
Resumo:
This is the first reported case of benign intracranial hypertension (BIH) occurring with acromegaly and resolving after successful treatment of a growth hormone-secreting pituitary adenoma. BIH has been reported with recombinant human growth hormone (rhGH) therapy of GH deficient patients and insulin-like growth factor I (IGF-I) treatment of growth hormone (GH) insensitivity (Laron syndrome) in children. We postulate that the proposed mechanism causing BIH in rhGH-treated children and in acromegaly results from increased cerebrospinal fluid production from the choroid plexi secondary to elevated cerebrospinal fluid growth hormone concentrations that trigger local IGF-I secretion and activation of IGF-I receptors.
Resumo:
The nuclear localization of a number of growth factors, cytokine ligands and their receptors has been reported in various cell lines and tissues. These include members of the fibroblast growth factor (FGF), epidermal growth factor and growth hormone families. Accordingly, a number of nuclear functions have begun to emerge for these protein families. The demonstration of functional interactions of these proteins with the nuclear import machinery has further supported their functions as nuclear signal transducers. Here, we review the membrane- trafficking machinery and pathways demonstrated to regulate this cell surface to nucleus-trafficking event and highlight the many remaining unanswered questions. We focus on the FGF family, which is providing many of the clues as to the process of this unusual phenomenon.
Resumo:
There is evidence for the role of genetic and environmental factors in feline and canine diabetes. Type 2 diabetes is the most common form of diabetes in cats. Evidence for genetic factors in feline diabetes includes the overrepresentation of Burmese cats with diabetes. Environmental risk factors in domestic or Burmese cats include advancing age, obesity, male gender, neutering, drug treatment, physical inactivity, and indoor confinement. High-carbohydrate diets increase blood glucose and insulin levels and may predispose cats to obesity and diabetes. Low-carbohydrate, high-protein diets may help prevent diabetes in cats at risk such as obese cats or lean cats with underlying low insulin sensitivity. Evidence exists for a genetic basis and altered immune response in the pathogenesis of canine diabetes. Seasonal effects on the incidence of diagnosis indicate that there are environmental influences on disease progression. At least 50% of diabetic dogs have type 1 diabetes based on present evidence of immune destruction of P-cells. Epidemiological factors closely match those of the latent autoimmune diabetes of adults form of human type 1 diabetes. Extensive pancreatic damage, likely from chronic pancreatitis, causes similar to28% of canine diabetes cases. Environmental factors such as feeding of high-fat diets are potentially associated with pancreatitis and likely play a role in the development of pancreatitis in diabetic dogs. There are no published data showing that overt type 2 diabetes occurs in dogs or that obesity is a risk factor for canine diabetes. Diabetes diagnosed in a bitch during either pregnancy or diestrus is comparable to human gestational diabetes.
Resumo:
Hormone replacement therapy (HRT) has been reported to exert a positive effect on preserving muscle strength following the menopause, however, the mechanism of action remains unclear. We examined whether the mechanism involved preservation of muscle composition as determined by skeletal muscle attenuation. Eighty women aged 50-57 years were randomly assigned to either: HRT, exercise (Ex), HRT + exercise (ExHRT), and control (Co) for 1 year. The study was double-blinded with subjects receiving oestradiol and norethisterone acetate (Kliogest) or placebo. Exercise included progressive high-impact training for the lower limbs. Skeletal muscle attenuation in Hounsfield units (HU) was determined by computed tomography of the mid-thigh. Areas examined were the quadriceps compartment (includes intermuscular adipose tissue), quadriceps muscles, the posterior compartment and posterior muscles. Muscle performance was determined by knee extensor strength, vertical jump height, and running speed over 20 m. Fifty-one women completed the intervention. Vertical jump height and running speed improved in the HRT and ExHRT groups compared with Co (interaction, P < 0.01). For both the quadriceps compartment and quadriceps muscles, HU significantly increased (interaction, P <= 0.005) for HRT, Ex, and ExHRT compared with Co. For the posterior compartment, HU for the HRT and ExHRT were significantly increased compared with Co, while for posterior muscles, ExHRT was significantly greater than Co. Although the effects were modest, the results indicate that HRT, either alone or combined with exercise, may play a role in preserving/improving skeletal muscle attenuation in early postmenopausal women and thereby exert a positive effect on muscle performance.
Resumo:
Sulfate plays an essential role in human growth and development. Here, we characterized the functional properties of the human Na+-sulfate cotransporter (hNaS2), determined its tissue distribution, and identified its gene (SLC13A4) structure. Expression of hNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by thiosulfate, phosphate, molybdate. selenate and tungstate, but not by oxalate, citrate, succinate, phenol red or DIDS. Transport kinetics of hNaS2 determined a K, for sulfate of 0.38 mM, suggestive of a high affinity sulfate transporter. Na+ kinetics determined a Hill coefficient of 1.6 +/- 0.6, suggesting a Na: SO42- stoichiometry of 2:1. hNaS2 mRNA was highly expressed in placenta and testis, with intermediate levels in brain and lower levels found in the heart, thymus, and liver. The SLC13A4 gene contains 16 exons, spanning over 47 kb in length. Its 5'-flanking region contains CAAT- and GC-box motifs, and a number of putative transcription factor binding sites, including GATA-1, AP-1, and AP-2 consensus sequences. This is the first study to characterize hNaS2 transport kinetics, define its tissue distribution, and resolve its gene (SLC13A4) structure and 5' flanking region. (C) 2004 Elsevier Inc. All rights reserved.