48 resultados para galaxy photometry
Resumo:
We present the result of investigations into two theories to explain the star formation rate (SFR)-density relationship. For regions of high galaxy density, either there are fewer star-forming galaxies or galaxies capable of forming stars are present but some physical process is suppressing their star formation. We use H I Parkes All-Sky Survey's (HIPASS) HI detected galaxies and infrared and radio fluxes to investigate SFRs and efficiencies with respect to local surface density. For nearby (vel < 10 000 km s(-1)) H I galaxies, we find a strong correlation between H I mass and SFR. The number of H I galaxies decreases with increasing local surface density. For H I galaxies (1000 < vel < 6000 km s(-1)), there is no significant change in the SFR or the efficiency of star formation with respect to local surface density. We conclude that the SFR-density relation is due to a decrease in the number of H I star-forming galaxies in regions of high galaxy density and not to the suppression of star formation.
Resumo:
We present a catalogue of galaxies in Abell 3653 from observations made with the 2-degree field (2dF) spectrograph at the Anglo-Australian Telescope. Of the 391 objects observed, we find 111 are bona fide members of Abell 3653. We show that the cluster has a velocity of cz= 32 214 +/- 83 km s(-1) (z= 0.10 738 +/- 0.00 027), with a velocity dispersion typical of rich, massive clusters of sigma(cz)= 880(-54)(+66). We find that the cD galaxy has a peculiar velocity of 683 +/- 96 km s(-1) in the cluster rest frame - some 7 sigma away from the mean cluster velocity, making it one of the largest and most significant peculiar velocities found for a cD galaxy to date. We investigate the cluster for signs of substructure, but do not find any significant groupings on any length scale. We consider the implications of our findings on cD formation theories.
Resumo:
We present the analysis of the spectroscopic and photometric catalogues of 11 X-ray luminous clusters at 0.07 < z < 0.16 from the Las Campanas/Anglo-Australian Telescope Rich Cluster Survey. Our spectroscopic data set consists of over 1600 galaxy cluster members, of which two-thirds are outside r(200). These spectra allow us to assign cluster membership using a detailed mass model and expand on our previous work on the cluster colour-magnitude relation ( CMR) where membership was inferred statistically. We confirm that the modal colours of galaxies on the CMR become progressively bluer with increasing radius d( B - R)/dr(p) = - 0.011 +/- 0.003 and with decreasing local galaxy density d( B - R)/dlog ( Sigma)= - 0.062 +/- 0.009. Interpreted as an age effect, we hypothesize that these trends in galaxy colour should be reflected in mean H delta equivalent width. We confirm that passive galaxies in the cluster increase in Hd line strength as dH delta/dr(p) = 0.35 +/- 0.06. Therefore, those galaxies in the cluster outskirts may have younger luminosity-weighted stellar populations; up to 3 Gyr younger than those in the cluster centre assuming d( B - R)/dt = 0.03 mag per Gyr. A variation of star formation rate, as measured by [ O II]lambda 3727 angstrom, with increasing local density of the environment is discernible and is shown to be in broad agreement with previous studies from the 2dF Galaxy Redshift Survey and the Sloan Digital Sky Survey. We divide our spectra into a variety of types based upon the MORPHs classification scheme. We find that clusters at z similar to 0.1 are less active than their higher-redshift analogues: about 60 per cent of the cluster galaxy population is non-star forming, with a further 20 per cent in the post-starburst class and 20 per cent in the currently active class, demonstrating that evolution is visible within the past 2 - 3 Gyr. We also investigate unusual populations of blue and very red non-star forming galaxies and we suggest that the former are likely to be the progenitors of galaxies which will lie on the CMR, while the colours of the latter possibly reflect dust reddening. We show that the cluster galaxies at large radii consist of both backsplash ones and those that are infalling to the cluster for the first time. We make a comparison to the field population at z similar to 0.1 and examine the broad differences between the two populations. Individually, the clusters show significant variation in their galaxy populations which we suggest reflects their recent infall histories.
Resumo:
We have found the peculiar galaxy NGC 922 to be a new drop-through ring galaxy using multiwavelength (ultraviolet-radio) imaging and spectroscopic observations. Its 'C'-shaped morphology and tidal plume indicate a recent strong interaction with its companion which was identified with these observations. Using numerical simulations we demonstrate that the main properties of the system can be generated by a high-speed off-axis drop-through collision of a small galaxy with a larger disc system, thus making NGC 922 one of the nearest known collisional ring galaxies. While these systems are rare in the local Universe, recent deep Hubble Space Telescope images suggest they were more common in the early Universe.
Resumo:
We present the first dynamical analysis of a galaxy cluster to include a large fraction of dwarf galaxies. Our sample of 108 Fornax Cluster members measured with the UK Schmidt Telescope FLAIR-II spectrograph contains 55 dwarf galaxies (15.5 > b(j) > 18.0 or -16 > M-B > -13.5). H alpha emission shows that of the dwarfs are star forming, twice the fraction implied by morphological classifications. The total sample has a mean velocity of 1493 +/- 36 kms s(-1) and a velocity dispersion of 374 +/- 26 km s(-1). The dwarf galaxies form a distinct population: their velocity dispersion (429 +/- 41 km s(-1)) is larger than that of the giants () at the 98% confidence level. This suggests that the dwarf population is dominated by infalling objects whereas the giants are virialized. The Fornax system has two components, the main Fornax Cluster centered on NGC 1399 with cz = 1478 km s(-1) and sigma (cz) = 370 km s(-1) and a subcluster centered 3 degrees to the southwest including NGC 1316 with cz = 1583 km s(-1) and sigma (cz) = 377 km s(-1). This partition is preferred over a single cluster at the 99% confidence level. The subcluster, a site of intense star formation, is bound to Fornax and probably infalling toward the cluster core for the first time. We discuss the implications of this substructure for distance estimates of the Fornax Cluster. We determine the cluster mass profile using the method of Diaferio, which does not assume a virialized sample. The mass within a projected radius of 1.4 Mpc is (7 +/- 2) x 10(13) M-., and the mass-to-light ratio is 300 +/- 100 M-./L-.. The mass is consistent with values derived from the projected mass virial estimator and X-ray measurements at smaller radii.
Resumo:
We describe a search for compact dwarf galaxies in the Fornax cluster using the FLAIR spectrograph on the UK Schmidt Telescope. We measured radial velocities of 453 compact galaxies brighter than B-T approximate to 17.3 and found seven new compact dwarf cluster members that were not classified in previous surveys as members of the cluster. These are amongst the most compact, high surface brightness dwarf galaxies known. The inclusion of these galaxies in the cluster does not change the total luminosity function significantly, but they are important because of their extreme nature; one in particular appears to be a dwarf spiral. Three of the new dwarfs have strong emission lines and we identify them as blue compact dwarfs (BCDs), doubling the number of confirmed BCDs in the cluster. We also determined that none of the compact dwarf elliptical (M32-like) candidates is in the cluster, down to an absolute magnitude M-B = -13.2. We have investigated the claim of Irwin et al. that there is no strong relation between surface brightness and magnitude for the cluster members and find some support for this for the brighter galaxies (B-T < 17.3), but fainter galaxies still need to be measured.
Resumo:
We describe a sample of 13 bright (18.5 < B-J < 20.1), compact galaxies at low redshift (0.05 < z < 0.21) behind the Fornax Cluster. These galaxies are unresolved on UK Schmidt sky survey plates, and so they would be missing from most galaxy catalogs compiled from this material. The objects were found during initial observations of The Fornax Spectroscopic Survey. This project is using the Two-degree Field spectrograph on the Anglo-Australian Telescope to obtain spectra for a complete sample of all 14,000 objects, stellar and nonstellar, with 16.5 < B-J < 19.7, in a 12 deg(2) area centered on the Fornax Cluster of galaxies. The surface density of compact galaxies with magnitudes 16.5 < B-J < 19.7 is 7 +/- 3 deg(-2), representing 2.8% +/- 1.6% of all local (z < 0.2) galaxies to this limit. There are 12 +/- 3 deg(-2) with 16.5 < B-J < 20.2. They are luminous (-21.5 < M-B < -18.0, for H-o = 50 km s(-1) Mpc(-1)), and most have strong emission lines (H alpha equivalent widths of 40-200 Angstrom) and small sizes typical of luminous H II galaxies and compact narrow emission line galaxies. Four out of 13 have red colors and early-type spectra, and so they are unlikely to have been detected in any previous surveys.
Resumo:
We report the discovery, from the H I Parkes All-Sky Survey (HIPASS), of an isolated cloud of neutral hydrogen, which we believe to be extragalactic. The H I mass of the cloud (HIPASS J1712-64) is very low, 1.7 x 10(7) M-circle dot, using an estimated distance of similar to 3.2 Mpc. Most significantly, we have found no optical companion to this object to very faint limits [mu(B) similar to 27 mag arcsec(-2)]. HIPASS J1712-64 appears to be a binary system similar to, but much less massive than, H I 1225 + 01 (the Virgo H. I cloud) and has a size of at least 15 kpc. The mean velocity dispersion measured with the Australia Telescope Compact Array (ATCA) is only 4 km s(-1) for the main component and, because of the weak or nonexistent star formation, possibly reflects the thermal line width (T < 2000 K) rather than bulk motion or turbulence. The peak column density for HIPASS J1712-64, from the combined Parkes and ATCA data, is only 3.5 x 1019 cm(-2), which is estimated to be a factor of 2 below the critical threshold for star formation. Apart from its significantly higher velocity, the properties of HIPASS J1712-64 are similar to the recently recognized class of compact high-velocity clouds. We therefore consider the evidence for a Local Group or Galactic origin, although a more plausible alternative is that HIPASS J1712-64 was ejected from the interacting Magellanic Cloud-Galaxy system at perigalacticon similar to 2 x 10(8) yr ago.
Resumo:
We present a new set of deep H I observations of member galaxies of the Fornax cluster. We detected 35 cluster galaxies in H I. The resulting sample, the most comprehensive to date, is used to investigate the distribution of neutral hydrogen in the cluster galaxies. We compare the H I content of the detected cluster galaxies with that of field galaxies by measuring H I mass-to-light ratios and the H I deficiency parameter of Solanes et al. (1996). The mean H I mass-to-light ratio of the cluster galaxies is 0.68 +/- 0.15, significantly lower than for a sample of H I-selected field galaxies (1.15 +/- 0.10), although not as low as in the Virgo cluster (0.45 +/- 0.03). In addition, the H I content of two cluster galaxies (NGC1316C and NGC1326B) appears to have been affected by interactions. The mean H I deficiency for the cluster is 0.38 +/- 0.09 (for galaxy types T = 1-6), significantly greater than for the field sample (0.05 +/- 0.03). Both these tests show that Fornax cluster galaxies are H I-deficient compared to field galaxies. The kinematics of the cluster galaxies suggests that the H I deficiency may be caused by ram-pressure stripping of galaxies on orbits that pass close to the cluster core. We also derive the most complete B-band Tully-Fisher relation of inclined spiral galaxies in Fornax. A subcluster in the South-West of the main cluster contributes considerably to the scatter. The scatter for galaxies in the main cluster alone is 0.50 mag, which is slightly larger than the intrinsic scatter of 0.4 mag. We use the Tully-Fisher relation to derive a distance modulus of Fornax relative to the Virgo cluster of -0.38 +/- 0.14 mag. The galaxies in the subcluster are (1.0 +/- 0.5) mag brighter than the galaxies of the main cluster, indicating that they are situated in the foreground. With their mean velocity 95 km s(-1) higher than that of the main cluster we conclude that the subcluster is falling into the main Fornax cluster.
Resumo:
By utilizing the large multiplexing advantage of the Two-degree Field spectrograph on the Anglo-Australian Telescope, we have been able to obtain a complete spectroscopic sample of all objects in a predefined magnitude range, 16.5 < b(j) < 19.7 regardless of morphology, in an area toward the center of the Fornax Cluster of galaxies. Among the unresolved or marginally resolved targets, we have found five objects that are actually at the redshift of the Fornax Cluster; i.e., they are extremely compact dwarf galaxies or extremely large star clusters. All five have absorption-line spectra. With intrinsic sizes of less than 1.1 HWHM (corresponding to approximately 100 pc at the distance of the cluster), they are more compact and significantly less luminous than other known compact dwarf galaxies, yet much brighter than any globular cluster. In this paper we present new ground-based optical observations of these enigmatic objects. In addition to having extremely high central surface brightnesses, these objects show no evidence of any surrounding low surface brightness envelopes down to much fainter limits than is the case for, e.g., nucleated dwarf elliptical galaxies. Thus, if they are not merely the stripped remains of some other type of galaxy, then they appear to have properties unlike any previously known type of stellar system.
Resumo:
The H I Parkes All-Sky Survey (HIPASS) is a blind 21 cm survey for extragalactic neutral hydrogen, covering the whole southern sky. The HIPASS Bright Galaxy Catalog (BGC) is a subset of HIPASS and contains the 1000 H I brightest (peak flux density) galaxies. Here we present the 138 HIPASS BGC galaxies that had no redshift measured prior to the Parkes multibeam H I surveys. Of the 138 galaxies, 87 are newly cataloged. Newly cataloged is defined as having no optical ( or infrared) counterpart in the NASA/IPAC Extragalactic Database. Using the Digitized Sky Survey, we identify optical counterparts for almost half of the newly cataloged galaxies, which are typically of irregular or Magellanic morphological type. Several H I sources appear to be associated with compact groups or pairs of galaxies rather than an individual galaxy. The majority ( 57) of the newly cataloged galaxies lie within 10degrees of the Galactic plane and are missing from optical surveys as a result of confusion with stars or dust extinction. This sample also includes newly cataloged galaxies first discovered by Henning et al. in the H I shallow survey of the zone of avoidance. The other 30 newly cataloged galaxies escaped detection because of their low surface brightness or optical compactness. Only one of these, HIPASS J0546-68, has no obvious optical counterpart, as it is obscured by the Large Magellanic Cloud. We find that the newly cataloged galaxies with -b->10degrees are generally lower in H I mass and narrower in velocity width compared with the total HIPASS BGC. In contrast, newly cataloged galaxies behind the Milky Way are found to be statistically similar to the entire HIPASS BGC. In addition to these galaxies, the HIPASS BGC contains four previously unknown H I clouds.
Resumo:
The Fornax Cluster Spectroscopic Survey (FCSS) project utilizes the Two-degree Field (2dF) multi-object spectrograph on the Anglo-Australian Telescope (AAT). Its aim is to obtain spectra for a complete sample of all 14 000 objects with 16 5 less than or equal to b(j) less than or equal to 19 7 irrespective of their morphology in a 12 deg(2) area centred on the Fornax cluster. A sample of 24 Fornax cluster members has been identified from the first 2dF field (3.1 deg(2) in area) to be completed. This is the first complete sample of cluster objects of known distance with well-defined selection limits. Nineteen of the galaxies (with -15.8 < M-B < 12.7) appear to be conventional dwarf elliptical (dE) or dwarf S0 (dS0) galaxies. The other five objects (with -13.6 < M-B < 11.3) are those galaxies which were described recently by Drinkwater et al. and labelled 'ultracompact dwarfs' (UCDs). A major result is that the conventional dwarfs all have scale sizes alpha greater than or similar to 3 arcsec (similar or equal to300 pc). This apparent minimum scale size implies an equivalent minimum luminosity for a dwarf of a given surface brightness. This produces a limit on their distribution in the magnitude-surface brightness plane, such that we do not observe dEs with high surface brightnesses but faint absolute magnitudes. Above this observed minimum scale size of 3 arcsec, the dEs and dS0s fill the whole area of the magnitude-surface brightness plane sampled by our selection limits. The observed correlation between magnitude and surface brightness noted by several recent studies of brighter galaxies is not seen with our fainter cluster sample. A comparison of our results with the Fornax Cluster Catalog (FCC) of Ferguson illustrates that attempts to determine cluster membership solely on the basis of observed morphology can produce significant errors. The FCC identified 17 of the 24 FCSS sample (i.e. 71 per cent) as being 'cluster' members, in particular missing all five of the UCDs. The FCC also suffers from significant contamination: within the FCSS's field and selection limits, 23 per cent of those objects described as cluster members by the FCC are shown by the FCSS to be background objects.