143 resultados para engineering systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of theoretical and experimental investigations have been made into the nature of purlin-sheeting systems over the past 30 years. These systems commonly consist of cold-formed zed or channel section purlins, connected to corrugated sheeting. They have proven difficult to model due to the complexity of both the purlin deformation and the restraint provided to the purlin by the sheeting. Part 1 of this paper presented a non-linear elasto plastic finite element model which, by incorporating both the purlin and the sheeting in the analysis, allowed the interaction between the two components of the system to be modelled. This paper presents a simplified version of the first model which has considerably decreased requirements in terms of computer memory, running time and data preparation. The Simplified Model includes only the purlin but allows for the sheeting's shear and rotational restraints by modelling these effects as springs located at the purlin-sheeting connections. Two accompanying programs determine the stiffness of these springs numerically. As in the Full Model, the Simplified Model is able to account for the cross-sectional distortion of the purlin, the shear and rotational restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The model requires no experimental or empirical input and its validity is shown by its goon con elation with experimental results. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past years, component-based software engineering has become an established paradigm in the area of complex software intensive systems. However, many techniques for analyzing these systems for critical properties currently do not make use of the component orientation. In particular, safety analysis of component-based systems is an open field of research. In this chapter we investigate the problems arising and define a set of requirements that apply when adapting the analysis of safety properties to a component-based software engineering process. Based on these requirements some important component-oriented safety evaluation approaches are examined and compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a practical application of MDA and reverse engineering based on a domain-specific modelling language. A well defined metamodel of a domain-specific language is useful for verification and validation of associated tools. We apply this approach to SIFA, a security analysis tool. SIFA has evolved as requirements have changed, and it has no metamodel. Hence, testing SIFA’s correctness is difficult. We introduce a formal metamodelling approach to develop a well-defined metamodel of the domain. Initially, we develop a domain model in EMF by reverse engineering the SIFA implementation. Then we transform EMF to Object-Z using model transformation. Finally, we complete the Object-Z model by specifying system behavior. The outcome is a well-defined metamodel that precisely describes the domain and the security properties that it analyses. It also provides a reliable basis for testing the current SIFA implementation and forward engineering its successor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method of formally specifying, refining and verifying concurrent systems which uses the object-oriented state-based specification language Object-Z together with the process algebra CSP. Object-Z provides a convenient way of modelling complex data structures needed to define the component processes of such systems, and CSP enables the concise specification of process interactions. The basis of the integration is a semantics of Object-Z classes identical to that of CSP processes. This allows classes specified in Object-Z to he used directly within the CSP part of the specification. In addition to specification, we also discuss refinement and verification in this model. The common semantic basis enables a unified method of refinement to be used, based upon CSP refinement. To enable state-based techniques to be used fur the Object-Z components of a specification we develop state-based refinement relations which are sound and complete with respect to CSP refinement. In addition, a verification method for static and dynamic properties is presented. The method allows us to verify properties of the CSP system specification in terms of its component Object-Z classes by using the laws of the the CSP operators together with the logic for Object-Z.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activated sludge comprises a complex microbiological community. The structure (what types of microorganisms are present) and function (what can the organisms do and at what rates) of this community are determined by external physico -chemical features and by the influent to the sewage treatment plant. The external features we can manipulate but rarely the influent. Conventional control and operational strategies optimise activated sludge processes more as a chemical system than as a biological one. While optimising the process in a short time period, these strategies may deteriorate the long-term performance of the process due to their potentially adverse impact on the microbial properties. Through briefly reviewing the evidence available in the literature that plant design and operation affect both the structure and function of the microbial community in activated sludge, we propose to add sludge population optimisation as a new dimension to the control of biological wastewater treatment systems. We stress that optimising the microbial community structure and property should be an explicit aim for the design and operation of a treatment plant. The major limitations to sludge population optimisation revolve around inadequate microbiological data, specifically community structure, function and kinetic data. However, molecular microbiological methods that strive to provide that data are being developed rapidly. The combination of these methods with the conventional approaches for kinetic study is briefly discussed. The most pressing research questions pertaining to sludge population optimisation are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of the nitrate recirculation flow in a predenitrification system is addressed. An elementary mass balance analysis on the utilisation efficiency of the influent biodegradable COD (bCOD) for nitrate removal indicates that the control problem can be broken down into two parts: maintaining the anoxic zone anoxic (i.e. nitrate is present throughout the anoxic zone) and maximising the usage of influent soluble bCOD for denitrification. Simulation studies using the Simulation Benchmark developed in the European COST program show that both objectives can be achieved by maintaining the nitrate concentration at the outlet of the anoxic zone at around 2 mgN/L. This setpoint appears to be robust towards variations in the influent characteristics and sludge kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.