36 resultados para crop futures
Resumo:
The Agricultural Production Systems slMulator, APSIM, is a cropping system modelling environment that simulates the dynamics of soil-plant-management interactions within a single crop or a cropping system. Adaptation of previously developed crop models has resulted in multiple crop modules in APSIM, which have low scientific transparency and code efficiency. A generic crop model template (GCROP) has been developed to capture unifying physiological principles across crops (plant types) and to provide modular and efficient code for crop modelling. It comprises a standard crop interface to the APSIM engine, a generic crop model structure, a crop process library, and well-structured crop parameter files. The process library contains the major science underpinning the crop models and incorporates generic routines based on physiological principles for growth and development processes that are common across crops. It allows APSIM to simulate different crops using the same set of computer code. The generic model structure and parameter files provide an easy way to test, modify, exchange and compare modelling approaches at process level without necessitating changes in the code. The standard interface generalises the model inputs and outputs, and utilises a standard protocol to communicate with other APSIM modules through the APSIM engine. The crop template serves as a convenient means to test new insights and compare approaches to component modelling, while maintaining a focus on predictive capability. This paper describes and discusses the scientific basis, the design, implementation and future development of the crop template in APSIM. On this basis, we argue that the combination of good software engineering with sound crop science can enhance the rate of advance in crop modelling. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Crop modelling has evolved over the last 30 or so years in concert with advances in crop physiology, crop ecology and computing technology. Having reached a respectable degree of acceptance, it is appropriate to review briefly the course of developments in crop modelling and to project what might be major contributions of crop modelling in the future. Two major opportunities are envisioned for increased modelling activity in the future. One opportunity is in a continuing central, heuristic role to support scientific investigation, to facilitate decision making by crop managers, and to aid in education. Heuristic activities will also extend to the broader system-level issues of environmental and ecological aspects of crop production. The second opportunity is projected as a prime contributor in understanding and advancing the genetic regulation of plant performance and plant improvement. Physiological dissection and modelling of traits provides an avenue by which crop modelling could contribute to enhancing integration of molecular genetic technologies in crop improvement. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Figures on the relative frequency of synthetic and composite future forms in Ouest-France are presented and compared with those of earlier studies on the passé simple and passé composé. The synthetic future is found to be dominant. Possible formal explanations for distribution are found to be inconclusive. Distribution across different text-types is found to be more promising, since contrastive functions of the two forms can be identified in texts where they co-occur. The composite future typically reports new proposals or plans as current news, while the synthetic future outlines details that will be realised at the time of implementation. Both functions are important in dailies, but current news is more often expressed in the present tense at the expense of the composite future.
Resumo:
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Habitat instability associated with seasonal crop succession in broad-acre farming systems presents a problem for the conservation and utilisation of beneficial insects in annual field crops. The present paper describes two experiments used to measure the potential of seven plant species to be utilised as winter refuges to support and conserve the predatory bug Pristhesancus plagipennis (Walker). In the first experiment, replicated plots of canola (Brassica napus ), red salvia (Salvia coccinea ), niger (Guizotia abyssinica ), linseed (Linum usitatissimum ), lupins (Lupinus angustifolius ), and lucerne (Medicago falcata ) were planted in a randomized experiment during Autumn 1998. Upon crop establishment, adults and nymphs of P. plagipennis were released into treatment plots and their numbers were assessed, along with those of their potential prey, throughout the ensuing winter months. Post-release sampling suggested that canola and niger retained a proportion of adult P. plagipennis , while niger, lucerne and canola retained some nymphs. The other plant species failed to support P. plagipennis nymphs and adults postrelease. In the second experiment, niger was compared with two lines of sunflower (Helianthus annus ). Both sunflower lines harboured significantly higher (P < 0.05) densities of P. plagipennis nymphs than did niger. The more successful refuge treatments (sunflower, niger and canola) had an abundance of yellow flowers that were attractive to pollinating insects, which served as supplementary prey on which P. plagipennis were observed to feed. Sunflower and niger also supported high densities of the prey insect Creontiades dilutus (Stal) and provided protective leafy canopies which supplied shelter during the winter months. The potential and limitations for using each plant species as a winter refuge to retain P. plagipennis during winter are discussed.