213 resultados para conserved epitopes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten microsatellite loci are described in Araucaria cunninghamii, the first reported in the Araucariaceae. Eight were tested in sections Eutacta and Bunya, which diverged more than 200 MYA, and to the sister genus Agathis. Specific amplification products within the expected size range were obtained for six to eight loci in section Eutacta (depending on species), five loci in section Bunya and three. loci in Agathis. Two of the loci (CRCAc1 and CRCAc2, both GA repeats) produced specific amplification products in all taxa, with orthology confirmed by sequence analysis. The repeats were perfect in all taxa. The flanking sequences were extremely conserved, with sequence divergence of 0% to 2.0% within Araucaria species and 2.9% to 7.5% between Araucaria and Agathis. These microsatellites represent some of the most conserved microsatellite loci reported in plants. This may be due to a low evolutionary rate in Araucariaceae genome or the loci may be closely associated with highly conserved, unreported genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blepharophimosis ptosis epicanthus inversus syndrome (BPES) is a human disorder caused by mutations in the forkhead transcription factor gene FOXL2 and is characterized by facial dysmorphology combined in some cases with ovarian failure. To better understand the role of FOXL2 in the etiology of ovarian failure in BPES, we examined its expression in embryonic ovaries of mice, chickens, and red-eared slider turtles, representatives of three phylogenetically distant vertebrate groups that have different mechanisms of sex determination. Expression of Foxl2 was detected in early ovaries of all three species around the time of sex determination and was associated with both somatic and germ cell populations in mice. Expression was sexually dimorphic in all cases. Sequence analysis of turtle and chicken FoxL2 orthologues indicated an unusually high degree of structural conservation during evolution. FoxL2 was found to be autosomal in chickens, and therefore unlikely to represent the dominant ovarian-determining gene that has been postulated to exist as a possible explanation for female heterogamety in birds. Our observations suggest that BPES may result from early abnormalities in regulating the development of the fetal ovary, rather than premature degeneration of the postnatal or adult ovary. Further, our results suggest that FOXL2 is a highly conserved early regulator of vertebrate ovarian development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Idiosyncratic markers are features of genes and genomes that are so unusual that it is unlikely that they evolved more than once in a lineage of organisms. Here we explore further the potential of idiosyncratic markers and changes to typically conserved tRNA sequences for phylogenetic inference. Hard ticks were chosen as the model group because their phylogeny has been studied extensively. Fifty-eight candidate markers from hard ticks ( family Ixodidae) and 22 markers from the subfamily Rhipicephalinae sensu lato were mapped onto phylogenies of these groups. Two of the most interesting markers, features of the secondary structure of two different tRNAs, gave strong support to the hypothesis that species of the Prostriata ( Ixodes spp.) are monophyletic. Previous analyses of genes and morphology did not strongly support this relationship, instead suggesting that the Prostriata is paraphyletic with respect to the Metastriata ( the rest of the hard ticks). Parallel or convergent evolution was not found in the arrangements of mitochondrial genes in ticks nor were there any reversals to the ancestral arthropod character state. Many of the markers identified were phylogenetically informative, whereas others should be informative with study of additional taxa. Idiosyncratic markers and changes to typically conserved nucleotides in tRNAs that are phylogenetically informative were common in this data set, and thus these types of markers might be found in other organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural killer T (NKT) cells play an important role in controlling cancers, infectious diseases and autoimmune diseases. Although the rhesus macaque is a useful primate model for many human diseases such as infectious and autoimmune diseases, little is known about their NKT cells. We analyzed Valpha24TCR+ T cells from rhesus macaque peripheral blood mononuclear cells stimulated with aalpha-galactosylceramide (a-GalCer) and interleukin-2. We found that rhesus macaques possess Va24TCR+ T cells, suggesting that recognition of alpha-GalCer is highly conserved between rhesus macaques and humans. The amino acid sequences of the V-J junction for the Valpha24TCR of rhesus macaque and human NKT cells are highly conserved (93% similarity), and the CD1d alpha1-alpha2 domains of both species are highly homologous (95.6%). These findings indicate that the rhesus macaque is a useful primate model for understanding the contribution of NKT cells to the control of human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrates the effectiveness of a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens by use of lipid core peptide (LCP) technology. An LCP formulation incorporating two different protective epitopes of the surface antiphagocytic M protein of group A streptococci (GAS)-the causative agents of rheumatic fever and subsequent rheumatic heart disease-was tested in a murine parenteral immunization and GAS challenge model. Mice were immunized with the LCP-GAS formulation, which contains an M protein amino-terminal type-specific peptide sequence (8830) in combination with a conserved non-host-cross-reactive carboxy-terminal C-region peptide sequence (J8) of the M protein. Our data demonstrated immunogenicity of the LCP-8830-J8 formulation in B10.BR mice when coadministered in complete Freund's adjuvant and in the absence of a conventional adjuvant. In both cases, immunization led to induction of high-titer GAS peptide-specific serum immunoglobulin G antibody responses and induction of highly opsonic antibodies that did not cross-react with human heart tissue proteins. Moreover, mice were completely protected from GAS infection when immunized with LCP-8830-J8 in the presence or absence of a conventional adjuvant. Mice were not protected, however, following immunization with an LCP formulation containing a control peptide from a Schistosoma sp. These data support the potential of LCP technology in the development of novel self-adjuvanting multi-antigen component vaccines and point to the potential application of this system in the development of human vaccines against infectious diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the importance of CD4(+) T cell responses to human cytonnegalovirus (HCMV) has recently been recognized in transplant and immunosuppressed patients, the precise specificity and nature of this response has remained largely unresolved. In the present study we have isolated CD4(+) CTL which recognize epitopes from HCMV glycoproteins gB and gH in association with two different HLA-DR antigens, DRA1*0101/DRB1*0701 (DR7) and DRA1*0101/DRB1*1101 (DR11). Comparison of amino acid sequences of HICMV isolates revealed that the gB and gH epitope sequences recognized by human CD4(+) T cells were not only conserved in clinical isolates from HCMV but also in CMV isolates from higher primates (chimpanzee, rhesus and baboon). Interestingly, these epitope sequences from chimpanzee, rhesus and baboon CMV are efficiently recognized by human CD4(+) CTL. More importantly, we show that gB-specific T cells from humans can also efficiently lyse pepticle-sensitized Patr-DR7(+) cells from chimpanzees. These findings suggest that conserved gB and gH epitopes should be considered while designing a prophylactic vaccine against HCMV. In addition, they also provide a functional basis for the conservation of MHC class 11 lineages between humans and Old World primates and open the possibility for the use of such primate models in vaccine development against HCMV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV)-encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type-dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I-restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8(+) T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8(+) T cell epitopes front EBNA1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclotides are the largest family of naturally occurring circular proteins. The mechanism by which the termini of these gene-encoded proteins are linked seamlessly with a peptide bond to form a circular backbone is unknown. Here we report cyclotide-encoding cDNA sequences from the plant Viola odorata and compare them with those from an evolutionarily distinct species, Oldenlandia affinis. Individual members of this multigene family encode one to three mature cyclotide domains. These domains are preceded by N-terminal repeat regions (NTRs) that are conserved within a plant species but not between species. We have structurally characterized peptides corresponding to these NTRs and show that, despite them having no sequence homology, they form a structurally conserved alpha-helical motif. This structural conservation suggests a vital role for the NTR in the in vivo folding, processing, or detoxification of cyclotide domains from the precursor protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using native chemical ligation, we synthesized a group A streptococcal. (GAS) vaccine that contained three different GAS M protein peptide epitopes in a chemically well-characterized construct in high purity. Two of the peptide epitopes represented variable amino terminal serotype determinants, and the third represented a carboxyl terminal conserved region determinant of the GAS M protein. We also synthesized a lipid core peptide (LCP) construct containing the same three peptides. Upon immunization of mice, the non-LCP construct only elicited antibody responses to all three epitopes with the use of adjuvant. The LCP construct, however, elicited excellent antibody responses to all three epitopes without the need for any additional adjuvant or carrier. We have synthesized the LCP synthetic vaccine system with good reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & objectives: To develop a broad strain coverage GAS vaccine, several strategies have been investigated which included multi-epitope approaches as well as targeting the M protein conserved C-region. These approaches, however, have relied on the use of adjuvants that are toxic for human application. The development of safe and effective adjuvants for human use is a key issue in the development of effective vaccines. In this study, we investigated the lipid polylysine core peptide (LCP) system as a self-adjuvanting GAS vaccine delivery approach. Methods: An LCP-GAS construct was synthesised incorporating multiple copies of a protective peptide epitope (J8) from the conserved carboxy terminal C-repeat region of the M protein. B10.BR mice were immunized parenterally with the LCP-J8 construct, with or without conventional adjuvant, prior to the assessment of immunogenicity and the induction of serum opsonic antibodies. Results: Our data demonstrated immunogenicity of LCP-J8 when coadministered in complete Freund's adjuvant (CFA), or administered in the absence of conventional adjuvant. In both cases, immunization led to the induction of high-titre J8 peptide-specific serum IgG antibody responses, and the induction of heterologous opsonic antibodies that did not cross-react with human heart tissue proteins. Interpretation & conclusion: These data indicated the potential of a novel self-adjuvanting LCP vaccine delivery system incorporating a synthetic GAS M protein C-region peptide immunogen in the induction of broadly protective immune responses, and pointed to the potential application of this system in human vaccine development against infectious diseases.