92 resultados para Trp-containing peptides
Resumo:
Objective. Differentiated dendritic cells (DC) and other antigen-presenting cells are characterized by the nuclear location of RelB, a member of the nuclear factor kappa B/Rel family. To characterize and enumerate differentiated DC in rheumatoid arthritis (RA) peripheral blood (PB), synovial fluid (SF), and synovial tissue (ST), the expression and location of RelB were examined. Methods. RelB protein expression and cellular location were determined in RA PB, SF, and ST by flow cytometry and immunohistochemical analysis of purified cells or formalin-fixed tissue. DNA-binding activity of RelB was determined by electrophoretic: mobility shift-Western immunoblotting assays. Results. Circulating RA PBDC resembled normal immature PBDC in that they did not express intracellular RelB protein. In RA ST serial sections, cells containing nuclear RelB (nRelB) were enriched in perivascular regions. A mean +/- SD of 84 +/- 10% of these cells were DC. The remaining nRelB+,HLA-DR+ cells comprised B cells and macrophages. Only 3% of sorted SFDC contained nRelB, However, RelB present in the nucleus of these SFDC was capable of binding DNA, and therefore capable of transcriptional activity. Conclusion. Circulating DC precursors differentiate and express RelB after entry into rheumatoid ST. Differentiated DC can thus be identified by immunohistochemistry in formalin-fixed ST. Signals for DC maturation may differ between RA ST and SF, resulting in nuclear location of RelB predominantly in ST. This is likely to have functional consequences for the DC in these sites.
Resumo:
A wide range of peptides produced from milk proteins have been demonstrated to produce a physiological response in model systems. These peptides may be released from intact proteins in the gastrointestinal tract by proteolytic digestion, but are also present in fermented products such as cheese and yogurt, as a result of the action of inherent proteases, such as plasmin, and/or bacterial proteases released by the starter culture. This study investigated the presence of peptides, previously reported to have bioactive properties, in commercially available yogurts and cheeses.
Resumo:
NMR solution structures are reported for two mutants (K16E, K16F) of the soluble amyloid beta peptide A beta(1-28). The structural effects of these mutations of a positively charged residue to anionic and hydrophobic residues at the alpha-secretase cleavage site (Lys16-Leu17) were examined in the membrane-simulating solvent aqueous SDS micelles. Overall the three-dimensional structures were similar to that for the native A beta(1-28) sequence in that they contained an unstructured N-terminus and a helical C-terminus. These structural elements are similar to those seen in the corresponding regions of full-length A beta peptides A beta(1-40) and A beta(1-42), showing that the shorter peptides are valid model systems. The K16E mutation, which might be expected to stabilize the macrodipole of the helix, slightly increased the helix length (residues 13-24) relative to the K16F mutation, which shortened the helix to between residues 16 and 24. The observed sequence-dependent control over conformation in this region provides an insight into possible conformational switching roles of mutations in the amyloid precursor protein from which A beta peptides are derived. In addition, if conformational transitions from helix to random coil to sheet precede aggregation of A beta peptides in vivo, as they do in vitro, the conformation-inducing effects of mutations at Lys16 may also influence aggregation and fibril formation. (C) 2000 Academic Press.
Resumo:
Overcoming the phenomenon known as difficult synthetic sequences has been a major goal in solid-phase peptide synthesis for over 30 years. In this work the advantages of amide backbone-substitution in the solid-phase synthesis of difficult peptides are augmented by developing an activated N-alpha-acyl transfer auxiliary. Apart from disrupting troublesome intermolecular hydrogen-bonding networks, the primary function of the activated N-alpha-auxiliary was to facilitate clean and efficient acyl capture of large or beta-branched amino acids and improve acyl transfer yields to the secondary N-alpha-amine. We found o-hydroxyl-substituted nitrobenzyl (Hnb) groups were suitable N-alpha-auxiliaries for this purpose. The relative acyl transfer efficiency of the Hnb auxiliary was superior to the 2-hydroxy-4-methoxybenzyl (Hmb) auxiliary with protected amino acids of varying size. Significantly, this difference in efficiency was more pronounced between more sterically demanding amino acids. The Hnb auxiliary is readily incorporated at the N-alpha-amine during SPPS by reductive alkylation of its corresponding benzaldehyde derivative and conveniently removed by mild photolysis at 366 nm. The usefulness of the Hnb auxiliary for the improvement of coupling efficiencies in the chain-assembly of difficult peptides was demonstrated by the efficient Hnb-assisted Fmoc solid-phase synthesis of a known hindered difficult peptide sequence, STAT-91. This work suggests the Hnb auxiliary will significantly enhance our ability to synthesize difficult polypeptides and increases the applicability of amide-backbone substitution.
Resumo:
Promiscuous T-cell epitopes make ideal targets for vaccine development. We report here a computational system, multipred, for the prediction of peptide binding to the HLA-A2 supertype. It combines a novel representation of peptide/MHC interactions with a hidden Markov model as the prediction algorithm. multipred is both sensitive and specific, and demonstrates high accuracy of peptide-binding predictions for HLA-A*0201, *0204, and *0205 alleles, good accuracy for *0206 allele, and marginal accuracy for *0203 allele. multipred replaces earlier requirements for individual prediction models for each HLA allelic variant and simplifies computational aspects of peptide-binding prediction. Preliminary testing indicates that multipred can predict peptide binding to HLA-A2 supertype molecules with high accuracy, including those allelic variants for which no experimental binding data are currently available.
Resumo:
The C-type natriuretic peptide from the platypus venom (OvCNP) exists in two forms, OvCNPa and OvCNPb, whose amino acid sequences are identical. Through the use of nuclear magnetic resonance, mass spectrometry, and peptidase digestion studies, we discovered that OvCNPb incorporates a D-amino acid at position 2 in the primary structure. Peptides containing a D-amino acid have been found in lower forms of organism, but this report is the first for a D-amino acid in a biologically active peptide from a mammal. The result implies the existence of a specific isomerase in the platypus that converts an L-amino acid residue in the protein to the D-configuration. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The recently discovered cyclotides kalata B1 and kalata B2 are miniproteins containing a head-to-tail cyclized backbone and a cystine knot motif, in which disulfide bonds and the connecting backbone segments form a ring that is penetrated by the third disulfide bond. This arrangement renders the cyclotides extremely stable against thermal and enzymatic decay, making them a possible template onto which functionalities can be grafted.We have compared the hydrodynamic properties of two prototypic cyclotides, kalata B1 and kalata B2, using analytical ultracentrifugation techniques. Direct evidence for oligomerization of kalata B2 was shown by sedimentation velocity experiments in which a method for determining size distribution of polydisperse molecules in solution was employed. The shape of the oligomers appears to be spherical. Both sedimentation velocity and equilibrium experiments indicate that in phosphate buffer kalata B1 exists mainly as a monomer, even at millimolar concentrations. In contrast, at 1.6 mM, kalata B2 exists as an equilibrium mixture of monomer (30%), tetramer (42%), octamer (25%), and possibly a small proportion of higher oligomers. The results from the sedimentation equilibrium experiments show that this self-association is concentration dependent and reversible. We link our findings to the three-dimensional structures of both cyclotides, and propose two putative interaction interfaces on opposite sides of the kalata B2 molecule, one involving a hydrophobic interaction with the Phe(6), and the second involving a charge-charge interaction with the Asp(25) residue. An understanding of the factors affecting solution aggregation is of vital importance for future pharmaceutical application of these molecules.
Resumo:
alpha-Conotoxins that target the neuronal nicotinic acetylcholine receptor have a range of potential therapeutic applications and are valuable probes for examining receptor subtype selectivity. The three-dimensional structures of about half of the known neuronal specific alpha-conotoxins have now been determined and have a consensus fold containing a helical region braced by two conserved disulfide bonds. These disulfide bonds define the two-loop framework characteristic for alpha-conotoxins, CCXmCXnC, where loop 1 comprises four residues (m = 4) and loop 2 between three and seven residues (n = 3, 6 or 7). Structural studies, particularly using NMR spectroscopy have provided an insight into the role and spatial location of residues implicated in receptor binding and biological activity.
Resumo:
Background: The fact that some cancers and viral infections can be controlled by effector CD8 T cells led to the possibility of utilising minimal CD8 T cell epitope peptides as vaccines. However using minimal CD8 T cell epitope peptide immunisations and a tumour protection model in mice, we have previously shown that functional memory CD8 T cells are not generated unless CD4 T help is provided at the time of CD8 T cell priming. Short-lived effector cells nevertheless are generated in the absence of T help. Aim: To determine the role of CD4 T help in multiple immunisations. Method: Minimal CD8 T cell peptides of HPV16 E7 protein and Ovalbumin were used (with adjuvants Quil-A or IFA) as immunogens in C57BL mice. The presence of effector CD8 T cells were determined by tumour protection assays and was quantified by IFN-gamma ELISPOT assays. Results: In the present study we show that unless T help is provided at the time CD8 T cells are primed, no CD8 effector cells are generated when boosted with the vaccine again in the absence of T help. Our results further show that this failure could be prevented by the inclusion of a T helper peptide during the primary or booster immunisations.
Resumo:
The critical interaction initiating and perhaps perpetuating rheumatoid arthritis (RA) is the presentation of arthritogenic antigen to autoreactive T cells. In contrast to many organ-specific autoimmune diseases, no candidate autoantigens have yet been confirmed for RA. Here, Ranjeny Thomas and Peter Lipsky examine the role of dendritic cells in autoimmune disease, leading to the hypothesis that activation of T cells by endogenous self-peptides may be sufficient to initiate RA.
Resumo:
Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified. one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf. one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond, These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ton-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC), They were characterized by. N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination, Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques, This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 mu M or less, Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC, Subfragment 1 (residues I to 10) was active against most of the test microorganisms at concentrations of 10 to 50 mu M. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 mu M. These antibacterial studies indicate that the activity of lactoferricin Is mainly, but not wholly, due to its N-terminal region.