82 resultados para Tissue assembly
Resumo:
The gene encoding the large conductance mechanosensitive ion channel (MscL) of Escherichia coli and several deletion mutants of mscL were cloned under the control of the T7 RNA polymerase promoter. Transformation of these constructs into an E. coli strain carrying an inducible T7 RNA polymerase gene allowed the specific production and labelling of MscL with [S-35]methionine. Preparation of membrane fractions of E. coli cells by sucrose gradient centrifugation indicated that the radiolabelled MscL was present in the inner cytoplasmic membrane in agreement with results of several studies. However, treatment of the labelled cells and cell membrane vesicles with various cross-linkers resulted in the majority of labelled protein migrating as a monomer with a small proportion of molecules (approximate to 25%) migrating as dimers and higher order multimers. This result is in contrast with a finding of a study suggesting that the channel exclusively forms hexamers in the cell membrane off. coli (1) and therefore may have profound implication for the activation and/or ''multimerization'' of the channel by mechanical stress exerted to the membrane. In addition, from the specific activity of the radiolabelled protein and the amount of protein in the cytoplasmic membrane fraction we estimated the number of MscL ion channels expressed under these conditions to be approximately 50 channels per single bacterium. (C) 1997 Academic Press.
Resumo:
Strain differences in tissue responses to infection with Candida albicans were examined in nude mice having susceptible (CBA/CaH) and resistant (BALB/c) parentage. Homozygous (nu/nu) mice of both strains were more resistant to systemic infection with C. albicans than heterozygous (nu/+) littermates as indicated by a reduction in both the severity of tissue damage and colony counts in the brain and kidney. However, the tissue lesions in nu/nu CBA/CaH mice were markedly more severe than those in nu/nu mice with the BALB/c background. This pattern was reflected in the greater fungal burden in the CBA/CaH strain. Analysis of cDNA from infected tissues using a competitive polymerase chain reaction excluded interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), and interleukin 6 (IL-6) as mediators of the enhanced resistance of the nude mice. The results confirm that the different patterns of lesion severity in BALB/c and CBA/CaH mice do not involve T lymphocyte-mediated pathology, and are consistent with the hypothesis that strain-dependent tissue damage is not dependent on the effector function of macrophages or their precursors.
Resumo:
Melphalan is commonly used as a cytotoxic agent in isolated limb perfusion for locally recurrent malignant melanoma. The time course of melphalan concentrations in perfusate and tissues during a 60-min melphalan perfusion and 30-min drug-free washout in the single-pass perfused rat hindlimb was examined using a physiologically based pharmacokinetic model. The rat hindlimbs were perfused with Krebs-Heinseleit buffer containing 4.7% bovine serum albumin (BSA) or 2.8% dextran 40 at a constant rate of 3.8 ml/min. The concentration of melphalan in perfusate and tissues was determined by highperformance liquid chromatography. The tissue concentrations of melphalan were significantly higher with the perfusate containing dextran than BSA during the 60-min perfusion. During the washout period, the melphalan concentration in the perfusates decreased rapidly in first few minutes, followed by a slower monoexponential decline. The estimated half life (t(1/2)) for melphalan removal from skin and fat was 59 +/- 2 min for both BSA and dextran perfusates. However, the estimated t(1/2) for melphalan removal from muscle was 79 and 96 min for BSA and dextran washout perfusates, respectively. The predicted concentration-time profiles obtained for melphalan with BSA and dextran perfusates appear to correspond closely to the observed data. This study showed that the uptake of melphalan into perfused tissues is impaired by the use of perfusates in which melphalan is highly bound. Melphalan washout from muscle, but not skin and fat, was facilitated by the use of perfusates in which melphalan is highly protein bound.
Resumo:
An immunoperoxidase technique was used to examine CD28, CD152, CD80 and CD86 positive cells in gingival biopsies from 21 healthy/gingivitis and 26 periodontitis subjects. The samples were placed into 3 groups (small, intermediate, large) according to the size of the infiltrate. The percent CD28+ T cells in the connective tissue infiltrates was highly variable with no differences between the healthy/gingivitis and periodontitis groups. While there was an increase in positive cells in intermediate infiltrates from both healthy/gingivitis (28.5%) and periodontitis (21.4%) patients compared with small infiltrates (8.6% and 11.8%, respectively), this was not significant, although the percent CD28+ T cells did increase significantly in tissues with increased proportions of B cells relative to T cells (p=0.047). A mean of less than 5% infiltrating T cells were CD152+ which was significantly lower than the mean percent CD28+ T cells in intermediate healthy/gingivitis lesions (p=0.021). The mean percent CD80+ and CD86+ B cells and macrophages was 1–7% and 8–16%, respectively, the difference being significant in intermediate healthy/gingivitis tissues (p=0.012). Analysis of these cells in relation to increasing numbers of B cells in proportion to T cells and also to macrophages, suggested that CD80 was expressed predominantly by macrophages while CD86 was expressed by both macrophages and B cells. Few endothelial cells expressed CD80 or CD86. Keratinocytes displayed cytoplasmic staining of CD80 rather than CD86 although the numbers of positive specimens in the healthy/gingivitis and periodontitis groups reduced with increasing inflammation. In conclusion, percentages of CD28, CD152, CD80 and CD86 did not reflect differences in clinical status. However, the percent CD28+ T cells increased with increasing size of infiltrate and with increasing proportions of B cells suggesting increased T/B cell interactions with increasing inflammation. The percent CD152+ cells remained low indicating that CD152 may not be involved in negative regulation of T cells in periodontal disease. CD80 and CD86 have been reported to promote Th1 and Th2 responses, respectively, and the higher percent CD86+ cells suggests a predominance of Th2 responses in both healthy/gingivitis and periodontitis tissues. Nevertheless, other factors including cytokines themselves and chemokines which modulate T cell cytokine profiles must be monitored to determine the nature of Th1/Th2 responses in periodontal disease.
Resumo:
Nitric oxide (NO) is a free radical which has complex roles in both health and disease. It is now recognized that NO is essential for a vast spectrum of intracellular and extracellular events in a wide variety of tissues. NO has also been implicated in the pathogenesis of numerous inflammatory and autoimmune diseases. In this review we consider the roles of NO generally and in particular the implications for periodontal diseases.
Resumo:
Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis: of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.
Resumo:
Early studies of changes in mucin expression in disorders of the gastrointestinal tract focused on alterations in the carbohydrate chain. This review briefly considers the various mechanisms by which such alterations may come about: (a) normal variation, (b) sialic acid alterations, (c) defective assembly of carbohydrate side-chains, (d) changed expression of core proteins and (e) epithelial metaplasia. The availability of monoclonal antibodies to mucin core proteins adds a new dimension to mucin histochemistry. It is now possible to offer explanations for traditional mucin histochemical findings on the basis of lineage-specific patterns of mucin core protein expression. Changes in core protein expression are described in inflammatory, metaplastic and neoplastic disorders of the gastrointestinal tract. The possibility that mucin change could be important in the aetiology of some diseases such as ulcerative colitis and H. pylori gastritis is considered. It is more probable, however, that changes in mucin expression are secondary to reprogramming of cellular differentiation and altered cell turnover. As such they may serve as markers to explain pathogenesis and provide novel diagnostic and prognostic information.