73 resultados para Nonrandom two-liquid model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An attempt was made to quantify the boundaries and validate the granule growth regime map for liquid-bound granules recently proposed by Iveson and Litster (AlChE J. 44 (1998) 1510). This regime map postulates that the type of granule growth behaviour is a function of only two dimensionless groups: the amount of granule deformation during collision (characterised by a Stokes deformation number, St(def)) and the maximum granule pore saturation, s(max). The results of experiments performed with a range of materials (glass ballotini, iron ore fines, copper chalcopyrite powder and a sodium sulphate and cellulose mixture) using both drum and high shear mixer granulators were examined. The drum granulation results gave good agreement with the proposed regime map. The boundary between crumb and steady growth occurs at St(def) of order 0.1 and the boundary between steady and induction growth occurs at St(def) of order 0.001. The nucleation only boundary occurs at pore saturations that increase from 70% to 80% with decreasing St(def). However, the high shear mixer results all had St(def) numbers which were too large. This is most likely to be because the chopper tip-speed is an over-estimate of the average impact velocity granules experience and possibly also due to the dynamic yield strength of the materials being significantly greater than the yield strengths measured at low strain rates. Hence, the map is only a useful tool for comparing the granulation behaviour of different materials in the same device. Until we have a better understanding of the flow patterns and impact velocities in granulators, it cannot be used to compare different types of equipment. Theoretical considerations also revealed that several of the regime boundaries are also functions of additional parameters not explicitly contained on the map, such as binder viscosity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An experimental study has been carried out for the gas-liquid two-phase flow in a packed bed simulating conditions of the gas and liquid flows in the lower part of blast furnace. The localised liquid flow phenomenon in presence of gas cross flow, which usually occurs around the cohesive zone and raceway in blast furnace, was investigated in detail. Such liquid flow is characterised in terms of liquid shift distance or liquid shift angle that can effectively be measured by the experiments involved in the current study. It is found that liquid shift angle does not significantly increase or decrease with different packing depth. This finding supports the hypothesis of the force balance model where a vectorial relationship among acting forces, i.e. gas drag force, gravitational force and solid-liquid friction force, and liquid shift angle does exist. Liquid shift angle is inversely proportional to particle size and liquid density, and proportional to square of gas superficial velocity, but is almost independent on liquid flowrate and liquid viscosity. The gas-liquid drag coefficient, an important aspect for quantifying the interaction between gas and liquid flows, was conceptually modified based on the discrete feature of liquid flow through a packed bed and evaluated by the combined theoretical and experimental investigation. Experimental measurements suggest that the gas-liquid drag coefficient is approximately a constant (C-DG(')=5.4+/-1.0) and is independent on liquid properties, gas velocity and packing structure. The result shows a good agreement with previous experimental data and prediction of the existing liquid flow model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Form factors are derived for a model describing the coherent Josephson tunneling between two coupled Bose-Einstein condensates. This is achieved by studying the exact solution of the model within the framework of the algebraic Bethe ansatz. In this approach the form factors are expressed through determinant representations which are functions of the roots of the Bethe ansatz equations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a coupled knowledge-based system (KBS) for the design of liquid-retaining structures, which can handle both the symbolic knowledge processing based on engineering heuristics in the preliminary synthesis stage and the extensive numerical crunching involved in the detailed analysis stage. The prototype system is developed by employing blackboard architecture and a commercial shell VISUAL RULE STUDIO. Its present scope covers design of three types of liquid-retaining structures, namely, a rectangular shape with one compartment, a rectangular shape with two compartments and a circular shape. Through custom-built interactive graphical user interfaces, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking and member sizing optimization. It is also integrated with various relational databases that provide the system with sectional properties, moment and shear coefficients and final member details. This system can act as a consultant to assist novice designers in the design of liquid-retaining structures with increase in efficiency and optimization of design output and automated record keeping. The design of a typical example of the liquid-retaining structure is also illustrated. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the modification of a two-dimensional finite element long wave hydrodynamic model in order to predict the net current and water levels attributable to the influences of waves. Tests examine the effects of the application of wave induced forces, including comparisons to a physical experiment. An example of a real river system is presented with comparisons to measured data, which demonstrate the importance of simulating the combined effects of tides and waves upon hydrodynamic behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of a gas flow field on the size of raceway has been studied experimentally using a two-dimensional (2-D) cold model. It is observed that as the blast velocity from the tuyere increases, raceway size increases, and when the blast velocity is decreased from its highest value, raceway size does not change much until the velocity reaches a critical velocity. Below the critical velocity, raceway size decreases with decreasing velocity but is always larger than that for the same velocity when the velocity increased. This phenomenon is called raceway hysteresis. Raceway hysteresis has been studied in the presence of different gas flow rates and different particle densities. Raceway hysteresis has been observed in all the experiments. The effect of liquid flow, with various superficial velocities, on raceway hysteresis has also been studied. A study of raceway size hysteresis shows that interparticle and particle-wall friction have a very large effect on raceway size. A hypothesis has been proposed to describe the hysteresis phenomenon in the packed beds. The relevance of hysteresis to blast furnace raceways has been discussed. Existing literature correlations for raceway size ignore the frictional effects. Therefore, their applicability to the ironmaking blast furnace is questionable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyse the relation between the entanglement and spin-squeezing parameter in the two-atom Dicke model and identify the source of the discrepancy recently reported by Banerjee (2001 Preprint quant-ph/0110032) and Zhou et al (2002 J. Opt. B. Quantum Semiclass. Opt. 4 425), namely that one can observe entanglement without spin squeezing. Our calculations demonstrate that there are two criteria for entanglement, one associated with the two-photon coherences that create two-photon entangled states, and the other associated with populations of the collective states. We find that the spin-squeezing parameter correctly predicts entanglement in the two-atom Dicke system only if it is associated with two-photon entangled states, but fails to predict entanglement when it is associated with the entangled symmetric state. This explicitly identifies the source of the discrepancy and explains why the system can be entangled without spin squeezing. We illustrate these findings with three examples of the interaction of the system with thermal, classical squeezed vacuum, and quantum squeezed vacuum fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The marsh porosity method, a type of thin slot wetting and drying algorithm in a two-dimensional finite element long wave hydrodynamic model, is discussed and analyzed to assess model performance. Tests, including comparisons to simple examples and theoretical calculations, examine the effects of varying the marsh porosity parameters. The findings demonstrate that the wetting and drying concept of marsh porosity, often used in finite element hydrodynamic modeling, can behave in a more complex manner than initially expected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Echinacea is composed of three major groups of compounds that are thought to be responsible for stimulation of the immune system-the caffeic acid conjugates, alkylamides and polysaccharides. This study has focussed on the former two classes, as these are the constituents found in ethanolic liquid extracts. Objective: To investigate the absorption of these two groups of compounds using Caco-2 monolayers, which are a model of the intestinal epithelial barrier. Results: The caffeic acid conjugates (caftaric acid, echinacoside and cichoric acid) permeated poorly through the Caco-2 monolayers although one potential metabolite, cinnamic acid, diffused readily with an apparent permeability (P-app) of 1x10(-4) cm/s. Alkylamides were found to diffuse through Caco-2 monolayers with P-app ranging from 3x10(-6) to 3x10(-4) cm/s. This diversity in P-app for the different alkylamides correlates to structural variations, with saturation and N-terminal methylation contributing to decreases in P-app. The transport of the alkylamides is not affected by the presence of other constituents and the results for synthetic alkylamides were in line with those for the alkylamides in the echinacea preparation. Conclusion: Alkylamides but not caffeic acid conjugates are likely to cross the intestinal barrier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An X-ray visualization technique has been used for the quantitative determination of local liquid holdups distribution and liquid holdup hysteresis in a nonwetting two-dimensional (2-D) packed bed. A medical diagnostic X-ray unit has been used to image the local holdups in a 2-D cold model having a random packing of expanded polystyrene beads. An aqueous barium chloride solution was used as a fluid to achieve good contrast on X-ray images. To quantify the local liquid holdup, a simple calibration technique has been developed that can be used for most of the radiological methods such as gamma ray and neutron radiography. The global value of total liquid holdup, obtained by X-ray method, has been compared with two conventional methods: drainage and tracer response. The X-ray technique, after validation, has been used to visualize and quantify, the liquid hysteresis phenomena in a packed bed. The liquid flows in preferred paths or channels that carry droplets/rivulets of increasing size and number as the liquid flow rate is increased. When the flow is reduced, these paths are retained and the higher liquid holdup that persists in these regions leads to the holdup hysteresis effect. Holdup in some regions of the packed bed may be an order of magnitude higher than average at a particular flow rate. (c) 2005 American Institute of Chemical Engineers

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of antiferromagnetic spin fluctuations on two-dimensional quarter-filled systems is studied theoretically. An effective t-J(')-V model on a square lattice which accounts for checkerboard charge fluctuations and next-nearest-neighbor antiferromagnetic spin fluctuations is considered. From calculations based on large-N theory on this model it is found that the exchange interaction J(') increases the attraction between electrons in the d(xy) channel only, so that both charge and spin fluctuations work cooperatively to produce d(xy) pairing.