59 resultados para Molecular-weight Heparin


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This field study was a combined chemical and biological investigation of the relative effects of using dispersants to treat oil spills impacting mangrove habitats. The aim of the chemistry was to determine whether dispersant affected the short- or long-term composition of a medium range crude oil (Gippsland) stranded in a tropical mangrove environment in Queensland, Australia. Sediment cores from three replicate plots of each treatment (oil only and oil plus dispersant) were analyzed for total hydrocarbons and for individual molecular markers (alkanes, aromatics, triterpanes, and steranes). Sediments were collected at 2 days, then 1, 7, 13 and 22 months post-spill. Over this time, oil in the six treated plots decreased exponentially from 36.6 +/- 16.5 to 1.2 +/- 0.8 mg/g dry wt. There was no statistical difference in initial oil concentrations, penetration of oil to depth, or in the rates of oil dissipation between oiled or dispersed oil plots. At 13 months, alkanes were >50% degraded, aromatics were similar to 30% degraded based upon ratios of labile to resistant markers. However, there was no change in the triterpane or sterane biomarker signatures of the retained oil. This is of general forensic interest for pollution events. The predominant removal processes were evaporation (less than or equal to 27%) and dissolution (greater than or equal to 56%), with a lag-phase of 1 month before the start of significant microbial degradation (less than or equal to 7%). The most resistant fraction of the oil that remained after 7 months (the higher molecular weight hydrocarbons) correlated with the initial total organic carbon content of the soil. Removal rate in the Queensland mangroves was significantly faster than that observed in the Caribbean and was related to tidal flushing. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The radiation chemistry of poly(dimethyl siloxane) has been investigated with respect to identification of the nature of the small molecule chain scission products. Low molecular weight linear and cyclic products have been identified through the use of Si-29 solution NMR, GPC and MALDI-TOF mass spectrometry. It has been suggested that the low molecular weight cyclic products are formed by back-biting depolymerization reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND. Secretory epithelial cells of human prostate contain a keratan sulfate proteoglycan (KSPG) associated with the prostatic secretory granules (PSGs). The proteoglycan has not been identified, but like the PSGs, it is lost in the early stages of malignant transformation. METHODS. Anion exchange and affinity chromatography were used to purify KSPG from human prostate tissue. Enzymatic deglycosylation was used to remove keratan sulfate (KS). The core protein was isolated using 2D gel electrophoresis, digested in-gel with trypsin, and identified by peptide mass fingerprinting (PMF). RESULTS. The purified proteoglycan was detected as a broad smear on Western blots with an apparent molecular weight of 65-95 kDa. The KS moiety was susceptible to digestion with keratanase 11 and peptide N-glycosidase F defining it as highly sulfated and N-linked to the core protein. The core protein was identified, following deglycosylation and PMF, as lumican and subsequently confirmed by Western blotting using an anti-lumican antibody. CONCLUSIONS. The KSPG associated with PSGs in normal prostate epithelium is lumican. While the role of lumican in extracellular matrix is well established, its function in the prostate secretory process is not known. It's potential to facilitate packaging of polyamines in PSGs, to act as a tumor suppressor and to mark the early stages of malignant transformation warrant further investigation. (C) 2003 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recombinant protein production in bacteria is efficient except that insoluble inclusion bodies form when some gene sequences are expressed. Such proteins must undergo renaturation, which is an inefficient process due to protein aggregation on dilution from concentrated denaturant. In this study, the protein-protein interactions of eight distinct inclusion-body proteins are quantified, in different solution conditions, by measurement of protein second virial coefficients (SVCs). Protein solubility is shown to decrease as the SVC is reduced (i.e., as protein interactions become more attractive). Plots of SVC versus denaturant concentration demonstrate two clear groupings of proteins: a more aggregative group and a group having higher SVC and better solubility. A correlation of the measured SVC with protein molecular weight and hydropathicity, that is able to predict which group each of the eight proteins falls into, is presented. The inclusion of additives known to inhibit aggregation during renaturation improves solubility and increases the SVC of both protein groups. Furthermore, an estimate of maximum refolding yield (or solubility) using high-performance liquid chromatography was obtained for each protein tested, under different environmental conditions, enabling a relationship between yield and SVC to be demonstrated. Combined, the results enable an approximate estimation of the maximum refolding yield that is attainable for each of the eight proteins examined, under a selected chemical environment. Although the correlations must be tested with a far larger set of protein sequences, this work represents a significant move beyond empirical approaches for optimizing renaturation conditions. The approach moves toward the ideal of predicting maximum refolding yield using simple bioinformatic metrics that can be estimated from the gene sequence. Such a capability could potentially screen, in silico, those sequences suitable for expression in bacteria from those that must be expressed in more complex hosts. (C) 2004 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cytochrome P450-dependent covalent binding of radiolabel derived fi om phenytoin (DPH) and its phenol and catechol metabolites, 5-(4'-hydroxyphenyl)-5-phenylhydantoin (HPPH) and 5-(3',4'-dihydroxyphenyl)-5-phenylhydantoin (CAT), was examined in liver microsomes. Radiolabeled HPPH and CAT and unlabeled CAT were obtained from microsomal incubations and isolated by preparative HPLC. NADPH-dependent covalent binding was demonstrated in incubations of human liver microsomes with HPPH. When CAT was used as substrate, covalent adduct formation was independent of NADPH, was enhanced in the presence of systems generating reactive oxygen species, and was diminished under anaerobic conditions or in the presence of cytoprotective reducing agents. Fluorographic analysis showed that radiolabel derived from DPH and HPPH was selectively associated with proteins migrating with approximate relative molecular weights of 57-59 kDa and at the dye front (molecular weights < 23 kDa) on denaturing gels. Lower levels of radiolabel were distributed throughout the molecular weight range. In contrast, little selectivity was seen in covalent adducts formed from CAT. HPPH was shown to be a mechanism-based inactivator of P450, supporting the contention that a cytochrome P450 is one target of covalent binding. These results suggest that covalent binding of radiolabel derived from DPH in rat and human Liver microsomes occurs via initial P450-dependent catechol formation followed by spontaneous oxidation to quinone and semiquinone derivatives that ultimately react with microsomal protein. Targets for covalent binding may include P450s, though the catechol appears to be sufficiently stable to migrate out of the P450 active site to form adducts with other proteins. In conclusion, we have demonstrated that DPH can be bioactivated in human liver to metabolites capable of covalently binding to proteins. The relationship of adduct formation to DPH-induced hypersensitivity reactions remains to be clarified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the application of two relatively new diagnostic techniques for the determination of insulation condition in aged transformers. The techniques are (a) measurements of interfacial polarization spectra by a DC method and (b) measurements of molecular weight and its distribution by gel permeation chromatography. Several other electrical properties of the cellulose polymer were also investigated. Samples were obtained from a retired power transformer and they were analysed by the developed techniques. Six distribution transformers were also tested with the interfacial polarization spectra measurement technique, and the molecular weight of paper/pressboard samples from these transformers were also measured by the gel permeation chromatography. The variation of the results through different locations in a power transformer is discussed in this paper. The possible correlation between different measured properties was investigated and discussed in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the analysis of accelerated aged insulation samples to investigate the degradation processes observed in the insulation from aged transformers. Short term accelerated ageing experiments were performed on paper wrapped insulated conductors and on pressboard samples. The condition of aged insulation samples was investigated by two relatively new diagnostic techniques: (a) measurements of interfacial polarization spectra by a DC method (b) measurements of molecular weight and its distribution by gel permeation chromatography. Several other electrical properties of the paper/pressboard samples were also studied. Possible correlations have been investigated among the different measured properties. The GPC results have been used to predict how molecular weights change with temperature and time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

T-cell cytokine profiles, anti Porphyromonas gingivalis antibodies and Western blot analysis of antibody responses were examined in BALB/c, CBA/CaH, C57BL6 and DBA/2J mice immunized intraperitoneally with different doses of P. gingivalis outer membrane antigens, Splenic CD4 and CD8 cells were examined for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma and IL-LD by FAGS analysis and levels of anti-P. gingivalis antibodies in the serum samples determined by enzyme-linked immunosorbent assay. Western blot analysis was performed on the sera from mice immunized with 100 mug of P. gingivalis antigens. The four strains of mice demonstrated varying degrees of T-cell immunity although the T-cell cytokine profiles exhibited by each strain were not affected by different immunizing doses. While BALB/c and DBA/2J mice exhibited responses that peaked at immunizing doses of 100-200 mug of P. gingivalis antigens, CBA/CaH and C57BL6 demonstrated weak T-cell responsiveness compared with control mice. Like the T-cell responses, serum antibody levels were not dose dependent. DBA/23 exhibited the lowest levels of anti-P. gingivalis antibodies followed by BALB/c with CBA/CaH and C57BL6 mice demonstrating the highest levels. Western blot analysis showed that there were differences in reactivity between the strains to a group of 13 antigens ranging in molecular weight from 15 to 43 kDa. Antibody responses to a number of these bands in BALB/c mice were of low density, whereas CBA/CaH and C57BL6 mice demonstrated high-density bands and DBA/2J mice showed medium to high responses. In conclusion, different immunizing doses of P. gingivalis outer membrane antigens had little effect on the T-cell cytokine responses and serum anti-P. gingivalis antibody levels. Western blot analysis, however, indicated that the four strains of mice exhibited different reactivity to some lower-molecular-weight antigens. Future studies are required to determine the significance of these differences, which may affect the outcome of P. gingivalis infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose. In the present study we examined the relationship between solvent uptake into a model membrane (silicone) with the physical properties of the solvents (e.g., solubility parameter, melting point, molecular weight) and its potential predictability. We then assessed the subsequent topical penetration and retention kinetics of hydrocortisone from various solvents to define whether modifications to either solute diffusivity or partitioning were dominant in increasing permeability through solvent-modified membranes. Methods. Membrane sorption of solvents was determined from weight differences following immersion in individual solvents, corrected for differences in density. Permeability and retention kinetics of H-3-hydrocortisone, applied as saturated solutions in the various solvents, were determined over 48 h in horizontal Franz-type glass diffusion cells. Results. Solvent sorption into the membrane could be related to differences in solubility parameters, MW and hydrogen bonding (r(2) = 0.76). The actual and predicted volume of solvent sorbed into the membrane was also found to be linearly related to Log hydrocortisone flux, with changes in both diffusivity and partitioning of hydrocortisone observed for the different solvent vehicles. Conclusions. A simple structure-based predictive model can be applied to the sorption of solvents into silicone membranes. Changes in solute diffusivity and partitioning appeared to contribute to the increased hydrocortisone flux observed with the various solvent vehicles. The application of this predictive model to the more complex skin membrane remains to be determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Icodextrin is a high molecular weight, starch-derived glucose polymer, which is capable of inducing sustained ultrafiltration over prolonged (12–16 hour) peritoneal dialysis (PD) dwells. The aim of this study was to evaluate the ability of icodextrin to alleviate refractory, symptomatic fluid overload and prolong technique survival in PD patients. Methods A prospective, open-label, pre-test/post-test study was conducted in 17 PD patients (8 females/9 males, mean age 56.8 ± 2.9 years) who were on the verge of being transferred to haemodialysis because of symptomatic fluid retention that was refractory to fluid restriction, loop diuretic therapy, hypertonic glucose exchanges and dwell time optimisation. One icodextrin exchange (2.5 L 7.5%, 12-hour dwell) was substituted for a long-dwell glucose exchange each day. Results Icodextrin significantly increased peritoneal ultrafiltration (885 ± 210 ml to 1454 ± 215 ml, p < 0.05) and reduced mean arterial pressure (106 ± 4 to 96 ± 4 mmHg, p < 0.05), but did not affect weight, plasma albumin concentration, haemoglobin levels or dialysate:plasma creatinine ratio. Diabetic patients (n = 12) also experienced improved glycaemic control (haemoglobin Alc decreased from 8.9 ± 0.7% to 7.9 ± 0.7%, p < 0.05). Overall PD technique survival was prolonged by a mean of 11.6 months (95% CI 6.0–17.3 months). On multivariate Cox proportional hazards analysis, extension of technique survival by icodextrin was only significantly predicted by baseline net daily peritoneal ultrafiltration (adjusted HR 2.52, 95% CI 1.13–5.62, p < 0.05). Conclusions Icodextrin significantly improved peritoneal ultrafiltration and extended technique survival in PD patients with symptomatic fluid overload, especially those who had substantially impaired peritoneal ultrafiltration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kinetics and mechanisms of thermally initiated (using 2,2'-azobisisoburyronitrile (AIBN) as initiator) radical homopolymerizations of a series of maleimides, including N-phenymaleimide (PHMI) [l-phenyl-1H-pyrrole-2,5-dione]; N-n-hexylmaleimide (nHMI) [l-(n-hexyI)-1H-pyrrole-2,5-dione]; and N-cyclohexylmaIeimide (CHMI) [l-cyclohexyl- 1H-pyrrole-2,5-dione] have been investigated in THF solution by an on-line FT-NIR technique. It was found that the order of the activation energies for the three N-sub-MIs is: E-a PHMI < E-a (PHMI) < E-a (CHMI). The overall polymerization rate parameter k and the pre-exponential factor A were calculated. The kinetic order with respect to the N-sub-MIs was in the range of 0.71 < m < 0.75 for the initiator and n = 1.0 for the monomer. Radical transfer to solvent was found to be the key factor in determining the apparent order with respect to the initiator. All of the homopolymers had a relatively low molecular weight. The end groups of the polymer chains were characterized by MALDI-TOF, GPC and NMR methods and the results clearly indicate that the polymerization was initiated by THF radicals, and that the termination reaction is mainly controlled by chain transfer to solvent through an hydrogen abstraction mechanism. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of the product from the free radical bulk copolymerization of methyl methacrylate (MMA) and allyl acetate (AAc) was investigated. The mole fraction of AAc plays an important role in the copolymerization of these two monomers. Molecular weight (MW) and molecular weight distribution (MWD) are completely altered when the feed composition is dominantly AAc. NMR spectroscopy confirmed the incorporation of AAc into the polymer. However, no allyl-allyl linkages were observed at low conversions. T-g was found to be affected by the incorporation of AAc into the polymer. (C) 2001 Society of Chemical Industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of plasma proteins on the cellular uptake of lipophilic substrates has perplexed investigators for many years. We tested the hypothesis that an ionic interaction between the protein-ligand complex and hepatocyte surface may be responsible for supplying more ligand to the cell for uptake. The surface-charged groups on albumin were modified to yield proteins having a range of isoelectric points (ALB, ALBs, ALBm, ALBe had values of 4.8-5.0, 4.5-4.7, 3.0-3.5, 8.4-8.6, respectively). [H-3]-Palmitate uptake studies were performed with adult rat hepatocyte suspensions using similar unbound ligand fractions in the presence of the different binding proteins. Mass spectrometry, isoelectric focusing (pI), and heptane : water partitioning were used to determine protein molecular weight, pI, and protein-palmitate equilibrium binding constant, respectively. Hepatocyte [H-3]-palmitate clearance in the presence of ALBs and ALBm were significantly lower (p < 0.05) than ALB, whereas [H-3]-palmitate clearance in the presence of ALBe was significantly higher (p < 0.05) than ALB. The data were consistent with the notion that ionic interactions between extracellular protein-ligand complexes and the hepatocyte surface facilitate the uptake of long-chain fatty acids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The toxicities and uptake mechanisms of two hepatotoxins, namely cylindrospermopsin and lophyrotomin, were investigated on primary rat hepatocytes by using microcystin-LIZ (a well-known hepatotoxin produced by cyanobacteria) as a comparison. Isolated rat hepatocytes were incubated with different concentrations of hepatotoxins for 0, 24, 48 and 72 h. The cell viability was assayed by the tetrazolium-based (MTT) assay. Microcystin-LR, cylindrospermopsin and lophyrotomin all exhibited toxic effects on the primary rat hepatocytes with 72-h LC50 of 8, 40 and 560 ng/ml, respectively. The involvement of the bile acid transport system in the hepatotoxin-induced toxicities was tested in the presence of two bile acids, cholate and taurocholate. Results showed that the bile acid transport system was responsible for the uptake, and facilitated the subsequent toxicities of lophyrotomin on hepatocytes. This occurred to a much lesser extent with cylindrospermopsin. With its smaller molecular weight, passive diffusion might be one of the possible mechanisms for cylindrospermopsin uptake into hepatocytes. This was supported by incubating a permanent cell line, KB (devoid of bile acid transport system), with cylindrospermopsin which showed cytotoxic effects. No inhibition of protein phosphatase 2A by cylindrospermopsin or lophyrotomin was found. This indicated that other toxic mechanisms besides protein phosphatase inhibition were producing the toxicities of cylindrospermopsin and lophyrotomin, and that they were unlikely to be potential tumor promoters. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transthyretin is an essential protein responsible for the transport of thyroid hormones and retinol in human serum and is also implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases, Here we report the solid phase synthesis of the monomeric unit of a transthyretin analog (equivalent to 127 amino acids) using t-Boc chemistry and peptide ligation and its folding to form a functional 54-kDa tetramer, The monomeric unit of the protein was chemically synthesized in three parts (positions 1-51, 54-99, and 102-127) and ligated using a chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of transthyretin's native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, transthyretin antibody recognition, and thyroid hormone binding. Other folding products included a high molecular weight aggregate as well as a transient dimeric species. This represents one of the largest macromolecules chemically synthesized to date and demonstrates the potential of protein chemical synthesis for investigations of protein-ligand interactions.