45 resultados para Information Visualization Environment
Resumo:
Multiresolution (or multi-scale) techniques make it possible for Web-based GIS applications to access large dataset. The performance of such systems relies on data transmission over network and multiresolution query processing. In the literature the latter has received little research attention so far, and the existing methods are not capable of processing large dataset. In this paper, we aim to improve multiresolution query processing in an online environment. A cost model for such query is proposed first, followed by three strategies for its optimization. Significant theoretical improvement can be observed when comparing against available methods. Application of these strategies is also discussed, and similar performance enhancement can be expected if implemented in online GIS applications.
Resumo:
This paper describes investigations into an optimal transmission scheme for a multiple input multiple output (MIMO) system operating in a Rician fading environment. The considerations are reduced to determining a covariance matrix of transmitted signals which maximizes the MIMO capacity under the condition that the receiver has perfect knowledge of the channel while the transmitter has the information about selected statistical quantities which are measured at the receiver. An optimal covariance matrix, which requires information of the Rice factor and the signal to noise ratio, is determined. The transmission scheme relying on the choice of the proposed covariance matrix outperforms the other transmission schemes which were reported earlier in the literature. The proposed scheme realizes an upper bound limit for the MIMO capacity under arbitrary Rician fading conditions. ©2005 IEEE
Resumo:
Current database technologies do not support contextualised representations of multi-dimensional narratives. This paper outlines a new approach to this problem using a multi-dimensional database served in a 3D game environment. Preliminary results indicate it is a particularly efficient method for the types of contextualised narratives used by Australian Aboriginal peoples to tell their stories about their traditional landscapes and knowledge practices. We discuss the development of a tool that complements rather than supplants direct experience of these traditional knowledge practices.
Resumo:
Arguably, the world has become one large pervasive computing environment. Our planet is growing a digital skin of a wide array of sensors, hand-held computers, mobile phones, laptops, web services and publicly accessible web-cams. Often, these devices and services are deployed in groups, forming small communities of interacting devices. Service discovery protocols allow processes executing on each device to discover services offered by other devices within the community. These communities can be linked together to form a wide-area pervasive environment, allowing processes in one p u p tu interact with services in another. However, the costs of communication and the protocols by which this communication is mediated in the wide-area differ from those of intra-group, or local-area, communication. Communication is an expensive operation for small, battery powered devices, but it is less expensive for servem and workstations, which have a constant power supply and 81'e connected to high bandwidth networks. This paper introduces Superstring, a peer to-peer service discovery protocol optimised fur use in the wide-area. Its goals are to minimise computation and memory overhead in the face of large numbers of resources. It achieves this memory and computation scalability by distributing the storage cost of service descriptions and the computation cost of queries over multiple resolvers.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.
Resumo:
A major requirement for pervasive systems is to integrate context-awareness to support heterogeneous networks and device technologies and at the same time support application adaptations to suit user activities. However, current infrastructures for pervasive systems are based on centralized architectures which are focused on context support for service adaptations in response to changes in the computing environment or user mobility. In this paper, we propose a hierarchical architecture based on active nodes, which maximizes the computational capabilities of various nodes within the pervasive computing environment, while efficiently gathering and evaluating context information from the user's working environment. The migratable active node architecture employs various decision making processes for evaluating a rich set of context information in order to dynamically allocate active nodes in the working environment, perform application adaptations and predict user mobility. The active node also utilizes the Redundant Positioning System to accurately manage user's mobility. This paper demonstrates the active node capabilities through context-aware vertical handover applications.