35 resultados para Congenital Esotropia
Resumo:
OBJECTIVE - To assess the timing of fetal growth spurt among pre-existing diabetic pregnancies (types 1 and 2) and its relationship with diabetic control. To correlate fetal growth acceleration with factors that might influence fetal growth. RESEARCH DESIGN AND METHODS - This retrospective study involved all pregestational diabetic pregnancies delivered at a tertiary obstetric hospital in Australia between 1 January 1994 and 31 December 1999. Pregnancies with major congenital fetal anomalies, multiple pregnancies, small-for-gestational-age pregnancies (90th centile for gestation) were compared with babies with normal birth weights. RESULTS- A total of 101 diabetic pregnancies were included. Diabetic mothers, who had LGA babies, had significantly higher prepregnancy body weight and BMI (P < 0.05). There were no differences in maternal age or parity among the two groups. There were also no differences in the first-, second-, and third-trimester HbA(1c) levels between the two groups. The abdominal circumference z-scores were significantly higher for LGA babies from 18 weeks and thereafter. The differences increased progressively as the gestation advanced. Maximum difference was noted in the third trimester (30-38 weeks). CONCLUSIONS - Fetal growth acceleration in LGA fetuses of diabetic mothers starts in the second trimester, from as early as 18 weeks. In this study, glucose control did not appear to have a direct effect on the incidence of LGA babies, and such observation might result from the effects of other confounding factors.
Resumo:
Objectives To assess the detection rate of congenital fetal malformations and specific problems related to routine ultrasound screening in women with pre-existing diabetes. Methods A retrospective study was carried out to assess the performance of routine ultrasound screening in women with pre-existing diabetes (Types 1 and 2) within a tertiary institution. The incidence, type and risk factors for congenital fetal malformations were determined. The detection rate of fetal anomalies for diabetic women was compared with that for the low-risk population. Factors affecting these detection rates were evaluated. Results During the study period, 12 169 low-risk pregnant women and 130 women with pre-existing diabetes had routine ultrasound screening performed within the institution. A total of 10 major anomalies (7.7%) and three minor anomalies (2.3%) were present in the fetuses of the diabetic women. Central nervous system and cardiovascular system anomalies accounted for 60% of the major anomalies. Peri-conceptional hemoglobin A 1 c of more than 9% was associated with a high prevalence of major anomalies (14311000). Women who had fetuses with major anomalies bad a significantly higher incidence of obesity (78% vs. 37%; P < 0.05). Ultrasound examination of these diabetic pregnancies showed high incidences of suboptimal image quality (37%), incomplete examinations, and repeat examinations (17%). Compared to the 'low-risk' non-diabetic population from the same institution, the relative risk for a major congenital anomaly among the diabetic women was 5.9-fold higher (95% confidence interval, 2.9-11.9). The detection rate for major fetal anomalies was significantly lower for diabetic women (30% vs. 73%; P < 0.01), and the mean body mass index for the diabetic group was significantly higher (29 vs. 23 kg/m(2); P < 0.001). Conclusion The incidence of congenital anomalies is higher in diabetic pregnancies. Unfortunately, the detection rate for fetal anomalies by antenatal ultrasound scan was significantly, worse than that for the low-risk population. This is likely to be related to the maternal body habitus and unsatisfactory examinations. Methods to overcome these difficulties are discussed.
Resumo:
Objective. This is an over-view of the cellular biology of upper nasal mucosal cells that have special characteristics that enable them to be used to diagnose and study congenital neurological diseases and to aid neural repair. Study Design: After mapping the distribution of neural cells in the upper nose, the authors' investigations moved to the use of olfactory neurones to diagnose neurological diseases of development, especially schizophrenia. Olfactory-ensheating glial cells (OEGs) from the cranial cavity promote axonal penetration of the central nervous system and aid spinal cord repair in rodents. The authors sought to isolate these cells from the more accessible upper nasal cavity in rats and in humans and prove they could likewise promote neural regeneration, making these cells suitable for human spinal repair investigations. Methods: The schizophrenia-diagnosis aspect of the study entailed the biopsy of the olfactory areas of 10 schizophrenic patients and 10 control subjects. The tissue samples were sliced and grown in culture medium. The ease of cell attachment to fibronectin (artificial epithelial basement membrane), as well as the mitotic and apoptotic indices, was studied in the presence and absence of dopamine in those cell cultures. The neural repair part of the study entailed a harvesting and insertion of first rat olfactory lamina propria rich in OEGs between cut ends of the spinal cords and then later the microinjection of an OEG-rich suspension into rat spinal cords previously transected by open laminectomy. Further studies were done in which OEG insertion was performed up to 1 month after rat cord transection and also in monkeys. Results: Schizophrenic patients' olfactory tissues do not easily attach to basement membrane compared with control subjects, adding evidence to the theory that cell wall anomalies are part of the schizophrenic lesion of neurones. Schizophrenic patient cell cultures had higher mitotic and apoptotic indices compared with control subjects. The addition of dopamine altered these indices enough to allow accurate differentiation of schizophrenics from control patients, leading to, possibly for the first time, an early objective diagnosis of schizophrenia and possible assessment of preventive strategies. OEGs from the nose were shown to be as effective as those from the olfactory bulb in promoting axonal growth across transected spinal cords even when added I month after injury in the rat. These otherwise paraplegic rats grew motor and proprioceptive and fine touch fibers with corresponding behavioral improvement. Conclusions. The tissues of the olfactory mucosa are readily available to the otolaryngologist. Being surface cells, they must regenerate (called neurogenesis). Biopsy of this area and amplification of cells in culture gives the scientist a window to the developing brain, including early diagnosis of schizophrenia. The Holy Grail of neurological disease is the cure of traumatic paraplegia and OEGs from the nose promote that repair. The otolaryngologist may become the necessary partner of the neurophysiologist and spinal surgeon to take the laboratory potential of paraplegic cure into the day-to-day realm of clinical reality.
Resumo:
Background - Marfan syndrome (MS) is a genetic disorder caused by a mutation in the fibrillin gene FBN1. Bicuspid aortic valve (BAV) is a congenital heart malformation of unknown cause. Both conditions are associated with ascending aortic aneurysm and premature death. This study examined the relationship among the secretion of extracellular matrix proteins fibrillin, fibronectin, tenascin, and vascular smooth muscle cell (VSMC) apoptosis. The role of matrix metalloproteinase (MMP)- 2 in VSMC apoptosis was studied in MS aneurysm. Methods and Results - Aneurysm tissue was obtained from patients undergoing surgery ( MS: 4 M, 1 F, age 27 - 45 years; BAV: 3 M, 2 F, age 28 - 65 years). Normal aorta from subjects with nonaneurysm disease was also collected ( 4 M, 1 F, age 23 - 93 years). MS and BAV aneurysm histology showed areas of cystic medial necrosis (CMN) without inflammatory infiltrate. Immunohistochemical study of cultured MS and BAV VSMC showed intracellular accumulation and reduction of extracellular distribution of fibrillin, fibronectin, and tenascin. Western blot showed no increase in expression of fibrillin, fibronectin, or tenascin in MS or BAV VSMC and increased expression of MMP-2 in MS VSMCs. There was 4-fold increase in loss of cultured VSMC incubated in serum-free medium for 24 hours in both MS ( 27 +/- 8%) and BAV ( 32 +/- 14%) compared with control ( 7 +/- 5%). Conclusions - In MS and BAV there is alteration in both the amount and quality of secreted proteins and an increased degree of VSMC apoptosis. Up-regulation of MMP-2 might play a role in VSMC apoptosis in MS VSMC. The findings suggest the presence of a fundamental cellular abnormality in BAV thoracic aorta, possibly of genetic origin.
Resumo:
Mutations in the E1alpha subunit of the pyruvate dehydrogenase multienzyme complex may result in congenital lactic acidosis, but little is known about the consequences of these mutations at the enzymatic level. Here we characterize two mutants (F205L and T231A) of human pyruvate dehydrogenase in vitro, using the enzyme expressed in Escherichia coli. Wild-type and mutant proteins were purified successfully and their kinetic parameters were measured. F205L shows impaired binding of the thiamin diphosphate cofactor, which may explain why patients carrying this mutation respond to high-dose vitamin B-1 therapy. T231A has very low activity and a greatly elevated K-m for pyruvate, and this combination of effects would be expected to result in severe lactic acidosis. The results lead to a better understanding of the consequences of these mutations on the functional and structural properties of the enzyme, which may lead to improved therapies for patients carrying these mutations.