41 resultados para Ceramic shade


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review provides an overview of surface diffusion and capillary condensate flow in porous media. Emphasis has been placed on the distinction between purely surface diffusion, multilayer surface diffusion, and, capillary condensate flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reef-building corals are renowned for their brilliant colours yet the biochemical basis for the pigmentation of corals is unknown. Here, we show that these colours are due to a family of GFP-like proteins that fluoresce under ultraviolet (UV) or visible light. Pigments from ten coral species were almost identical to pocilloporin (Dove et al. 1995) being dimers or trimers with approximately 28-kDa subunits. Degenerative primers made to common N-terminal sequences yielded a complete sequence from reef-building coral cDNA, which had 19.6% amino acid identity with green fluorescent protein (GFP). Molecular modelling revealed a 'beta -can' structure, like GFP, with 11 beta -strands and a completely solvent-inaccessible fluorophore composed of the modified residues Gln-61, Tyr-62 and Gly-63. The molecular properties of pocilloporins indicate a range of functions from the conversion of high-intensity UV radiation into photosynthetically active radiation (PAR) that can be regulated by the dinoflagellate peridinin-chlorophyll-protein (PCP) complex, to the shielding of the Soret and Q(x) bands of chlorophyll a and c from scattered high-intensity light. These properties of pocilloporin support its potential role in protecting the photosynthetic machinery of the symbiotic dinoflagellates of corals under high light conditions and in enhancing the availability of photosynthetic light under shade conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photochemical efficiency of symbiotic dinoflagellates within the tissues of two reef-building corals in response to normal and excess irradiance at wafer temperatures < 30 C were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence techniques, Dark-adapted F-v/F-m showed clear diurnal changes, decreasing to a low at solar noon and increasing in the afternoon. However, F-v/F-m also drifted downwards at night or in prolonged darkness, and increased rapidly during the early morning twilight. This parameter also increased when the oxygen concentration of the wafer holding the corals was increased. Such changes have not been described previously, and most probably reflect state transition's associated with PQ pool reduction via chlororespiration. These unusual characteristics may be a feature of an endosymbiotic environment, reflective of the well-documented night-time tissue hypoxia that occurs in corals. F-v/F-m decreased to 0.25 in response to full sunlight in shade-acclimated (shade) colonies of Stylophora pistillata, which is considerably lower than in light-acclimated (sun) colonies. In sun colonies, the reversible decrease in F-v/F-m was caused by a lowering of F-m and F-o suggesting photoprotection and no lasting damage. The decrease in F-v/F-m, however, was caused by a decrease in F-m and an increase in F-o in shade colonies suggesting photoinactivation and long-term cumulative photoinhibition. Shade colonies rapidly lost their symbiotic algae (bleached) during exposure to full sunlight. This study is consistent with the hypothesis that excess light leads to chronic damage of symbiotic dinoflagellates and their eventual removal from reef-building corals. It is significant that this can occur with high light conditions alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The grain-boundary conductivity (sigma (gb),) of 8-mol%-ytterbiastabilized zirconia increased markedly with heat treatment between 1000 degrees and 1300 degreesC with a slow heating rate (0.1 degreesC/min) before sintering. The extent of the sigma (gb) improvement was the same or larger than that via Al2O3 addition. The heat treatment did not affect the grain-interior conduction when sintered at 1600 degreesC, while Al2O3-derived scavenging significantly did, given the larger increment of total conductivity in the heat-treated sample. The formation of a silicon-containing phase in a discrete form was suggested as a possible route of scavenging the resistive phase from the correlation between average grain size and sigma (gb).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a model for permeation in oxide coated gas barrier films. The model accounts for diffusion through the amorphous oxide lattice, nano-defects within the lattice, and macro-defects. The presence of nano-defects indicate the oxide layer is more similar to a nano-porous solid (such as zeolite) than silica glass with respect to permeation properties. This explains why the permeability of oxide coated polymers is much greater, and the activation energy of permeation much lower, than values expected for polymers coated with glass. We have used the model to interpret permeability and activation energies measured for the inert gases (He, Ne and Ar) in evaporated SiOx films of varying thickness (13-70 nm) coated on a polymer substrate. Atomic force and scanning electron microscopy were used to study the structure of the oxide layer. Although no defects could be detected by microscopy, the permeation data indicate that macro-defects (>1 nm), nano-defects (0.3-0.4 nm) and the lattice interstices (<0.3 nm) all contribute to the total permeation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite resin is a widely-used direct tooth coloured restorative material. Photoactivation of the polymerisation reaction can be achieved by visible blue light from a range of light sources, including halogen lamps, metal halide lamps, plasma arc lamps, and Light Emitting Diode (LED) lights. Concerns have been raised that curing lights may induce a temperature rise that could be detrimental to the vitality of the dental pulp during the act of photoactivation. The present study examined heat changes associated with standardised class V restorations on the buccal surface of extracted premolar teeth, using a curing time of 40 seconds. The independent effects of type of light source, resin shade and remaining tooth thickness were assessed using a matrix experimental design. When a conventional halogen lamp, a metal halide lamp and two different LED lights were compared, it was found that both LED lamps elicited minimal thermal changes at the level of the dental pulp, whereas the halogen lamp induced greater changes and the metal halide lamp caused the greatest thermal insult of all the light sources. These thermal changes were influenced by resin shade, with different patterns for LED versus halogen or halide sources. Thermal stress reduced as the remaining thickness of tooth structure between the pulp and the cavity floor increased. From these results, it is concluded that LED lights produce the least thermal insult during photopolymerisation of composite resins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An acceleration compensated transducer was developed to enable the direct measurement of skin friction in hypervelocity impulse facilities. The gauge incorporated a measurement and acceleration element that employed direct shear of a piezoelectric ceramic. The design integrated techniques to maximize rise time and shear response while minimizing the affects of acceleration, pressure, heat transfer, and electrical interference. The arrangement resulted in a transducer natural frequency near 40 kHz. The transducer was calibrated for shear and acceleration in separate bench tests and was calibrated for pressure within an impulse facility. Uncertainty analyses identified only small experimental errors in the shear and acceleration calibration techniques. Although significant errors were revealed in the method of pressure calibration, total skin-friction measurement errors as low as +/-7-12% were established. The transducer was successfully utilized in a shock tunnel, and sample measurements are presented for flow conditions that simulate a flight Mach number near 8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the current knowledge and understanding of martensitic transformations in ceramics - the tetragonal to monoclinic transformation in zirconia in particular. This martensitic transformation is the key to transformation toughening in zirconia ceramics. A very considerable body of experimental data on the characteristics of this transformation is now available. In addition, theoretical predictions can be made using the phenomenological theory of martensitic transformations. As the paper will illustrate, the phenomenological theory is capable of explaining all the reported microstructural and crystallographic features of the transformation in zirconia and in some other ceramic systems. Hence the theory, supported by experiment, can be used with considerable confidence to provide the quantitative data that is essential for developing a credible, comprehensive understanding of the transformation toughening process. A critical feature in transformation toughening is the shape strain that accompanies the transformation. This shape strain, or nucleation strain, determines whether or not the stress-induced martensitic transformation can occur at the tip of a potentially dangerous crack. If transformation does take place, then it is the net transformation strain left behind in the transformed region that provides toughening by hindering crack growth. The fracture mechanics based models for transformation toughening, therefore, depend on having a full understanding of the characteristics of the martensitic transformation and, in particular, on being able to specify both these strains. A review of the development of the models for transformation toughening shows that their refinement and improvement over the last couple of decades has been largely a result of the inclusion of more of the characteristics of the stress-induced martensitic transformation. The paper advances an improved model for the stress-induced martensitic transformation and the strains resulting from the transformation. This model, which separates the nucleation strain from the subsequent net transformation strain, is shown to be superior to any of the constitutive models currently available. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High quality MSS membranes were synthesised by a single-step and two-step catalysed hydrolyses employing tetraethylorthosilicate (TEOS), absolute ethanol (EtOH), I M nitric acid (HNO3) and distilled water (H2O). The Si-29 NMR results showed that the two-step xerogels consistently had more contribution of silanol groups (Q(3) and Q(2)) than the single-step xerogel. According to the fractal theory, high contribution of Q(2) and Q(3) species are responsible for the formation of weakly branched systems leading to low pore volume of microporous dimension. The transport of diffusing gases in these membranes is shown to be activated as the permeance increased with temperature. Albeit the permeance of He for both single-step and two-step membranes are very similar, the two-step membranes permselectivity (ideal separation factor) for He/CO2 (69-319) and He/CH4 (585-958) are one to two orders of magnitude higher than the single-step membranes results of 2-7 and 69, respectively. The two-step membranes have high activation energy for He and H-2 permeance, in excess of 16 kJ mol(-1). The mobility energy for He permeance is three to six-fold higher for the two-step than the single-step membranes. As the mobility energy is higher for small pores than large pores and coupled with the permselectivity results, the two-step catalysed hydrolysis sol-gel process resulted in the formation of pore sizes in the region of 3 Angstrom while the single-step process tended to produce slightly larger pores. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to the sun by infants has been demonstrated to increase the risk of the development of melanoma and other skin cancers later in life. A cohort of 508 women who delivered healthy Caucasian babies were followed up at 1 year to determine their knowledge, attitudes and practices regarding sun protection towards themselves and their child. In addition, the 1-year-old infants were assessed by a trained nurse for the number of nevi they had on their skin. Results indicate caregivers reported a high level of sun-protection practices towards their child, with 93% of the caregivers reporting usually or always placing the child in the shade when going outside. Further, 81% of the caregivers reported usually or always placing a hat on the child, while 64% reported usually or always applying sunscreen to the child's exposed skin. Interestingly, only 61% of the caregivers reported that they stayed in the shade to reduce sun exposure and only 42% wore a hat when out in the sun. Mother's own personal sun-protection methods predicted the method of sun protection that she would most likely use for the child. While children appear to be reasonably protected from the sun, they are influenced by their mother's own behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sun exposure in childhood is I of the risk factors for developing skin cancer, yet little is known about levels of exposure at this age. This is particularly important in countries with high levels of ultraviolet radiation. (UVR) such as Australia. Among 49 children 3 to 5 years of age attending child care centers, UVR exposure was studied under 4 conditions in a repeated measures design; sunny days, cloudy days, teacher's instruction to stay in the shade, and a health professionals instruction to apply sunscreen. Three different data collection methods were employed: (a) completion of questionnaire or diary by parents and researcher, (b) polysulphone dosimeter readings, and (c) observational audits (video recording). Results of this study indicated that more than half the children had been sunburnt (pink or red) and more than a third had experienced painful sunburn (sore or tender) in the last summer. Most wore short sleeve shirts, short skirts or shorts and cap, that do not provide optimal levels of skin protection. However, sunscreen was applied to all exposed parts before the children went out to the playground. Over the period of I hr (9-10 a.m.) the average amount of time children spent in full sun was 22 min. On sunny days there was more variation across children in the amount of sun exposure received. While the potential amount of UVR exposure for young children during the hour they were outside on a sunny day was 1.45 MED (Minimum Erythemal Dose), they received on average 0.35 MED, which is an insufficient amount to result in an erythemal response on fair skin even without the use of sunscreen.