38 resultados para Cassava leaf|Legg shell
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
Phyllurus gulbaru, sp. nov., is a highly distinct species of leaf-tailed gecko restricted to rocky rainforest of Pattersons Gorge, north-west of Townsville. The possession of a cylindrical, non-depressed, tapering original and regenerated tail separates P. gulbaru from all congeners except P. caudiannulatus. From this species P. gulbaru is separated by having a partially divided, as opposed to fully divided, rostral scale. Furthermore, the very small spinose body tubercles of P. gulbaru are in marked contrast to the large spinose body scales of P. caudiannulatus. An analysis of 729 bp of mitochondrial 12S rRNA and cytochrome b genes reveals P. gulbaru to be a deeply divergent lineage with closer affinities to mid-east Queensland congeners than the geographically neighbouring P. amnicola on Mt Elliot. In conservation terms, P. gulbaru is clearly at risk. Field surveys of Pattersons Gorge and the adjacent ranges indicate that this species is restricted to a very small area of highly fragmented habitat, of which only a small proportion receives a degree of protection in State forest. Further, there is ongoing, unchecked destruction of dry rainforest habitat by fire. Under current IUCN criteria, P. gulbaru warrants an Endangered ( B1, 2) listing.
Resumo:
The ABA-deficient wilty pea (Pisum sativum L.) and its wild-type (WT) were grown at two levels of nitrogen supply (0.5 and 5.0 mM) for 5-6 weeks from sowing, to determine whether leaf ABA status altered the leaf growth response to N deprivation. Plants were grown at high relative humidity to prevent wilting of the wilty peas. Irrespective of N supply, expanding wilty leaflets had ca 50% less ABA than WT leaflets but similar ethylene evolution rates. Fully expanded wilty leaflets had lower relative water contents (RWC) and were 10-60% smaller in area (according to the node of measurement) than WT leaflets. However, there were no genotypic differences in plant relative leaf expansion rate (RLER). Growth of both genotypes at 0.5 mM N increased the RWC of fully expanded leaflets, but did not alter ethylene evolution or ABA concentration of expanding leaflets. Plants grown at 0.5 mM N showed a 20-30% reduction in RLER, which was similar in magnitude in both wilty and WT peas. Thus, leaf ABA status did not alter the leaf growth response to N deprivation.
Resumo:
Relationships between mineral uptake and tobacco shoot organogenesis were investigated during three morphogenic phases: phase 1, days 0-10, pre-meristem formation; phase 2, days 10-20, meristem initiation and formation; and phase 3, days 20-35, growth and differentiation of induced meristems into leafy shoots. The mineral content of both shoot-forming (SF) and non-shoot-forming (NSF) media was examined over the 35-day culture period. Both SF and NSF explants rapidly consumed iron during phase 1. Nitrate uptake in SF explants was high and independent of explant growth during phases 1 and 2, but greatest and strongly correlated with growth during phase 3. Phosphorus uptake was highest in SF explants during phases 2 and 3, and correlated with explant growth. Uptake of potassium, calcium and sulphur was strongly associated with explant growth during phase 3 whereas magnesium uptake was only poorly correlated with growth. Results from this study indicate that particular minerals may have an important role in regulating development as well as generally supporting growth.
Resumo:
No information is available on the decomposition and nutrient release pattern of Piper aduncum and Imperata cylindrica despite their importance in shifting cultivation systems of Papua New Guinea and other tropical regions. We conducted a litter bag study (24 weeks) on a Typic Eutropepts in the humid lowlands to assess the rate of decomposition of Piper aduncum, Imperata cylindrica and Gliricidia sepium leaves under sweet potato (Ipomoea batatas). Decomposition rates of piper leaf litter were fastest followed closely by gliricidia, and both lost 50% of the leaf biomass within 10 weeks. Imperata leaf litter decomposed much slower and half-life values exceeded the period of observation. The decomposition patterns were best explained by the lignin plus polyphenol over N ratio which was lowest for piper (4.3) and highest for imperata (24.7). Gliricidia leaf litter released 79 kg N ha(-1), whereas 18 kg N ha(-1) was immobilised in the imperata litter. The mineralization of P was similar for the three species, but piper litter released large amounts of K. The decomposition and nutrient release patterns had significant effects on the soil. The soil contained significantly more water in the previous imperata plots at 13 weeks due to the relative slow decomposition of the leaves. Soil N levels were significantly reduced in the previous imperata plots due to immobilisation of N. Levels of exchangeable K were significantly increased in the previous piper plots due to the large addition of K. It can be concluded that piper leaf litter is a significant and easily decomposable source of K which is an important nutrient for sweet potato. Gliricidia leaf litter contained much N, whereas imperata leaf litter releases relatively little nutrients and keeps the soil more moist. Gliricidia fallow is more attractive than an imperata fallow for it improves the soil fertility and produces fuelwood as additional saleable products.
Resumo:
Essential oils of rice flower, Ozothamnus diosmifolius, were analyzed by capillary gas chromatograplay-mass spectrometry. Flower oil contained beta-pinene (28.4%) and 1,8-cineole (28.2%), while the leaf oil contained a-pinene (26.0%), beta-pinene (11.6%) and 1,8-cineole (22.2%). Both oils had small amounts of spathulenol (4.1% and 5.2%, respectively).
Resumo:
Aims: To quantify Listeria levels on the shell and flesh of artificially contaminated cooked prawns after peeling, and determine the efficacy of Listeria innocua as a model for L. monocytogenes in this system. Methods and Results: A L. monocytogenes and L. innocua strain were inoculated separately onto cooked black tiger prawns using two protocols ( immersion or swabbing with incubation). Prawns were peeled by two methods ( gloved hand or scalpel and forceps) and numbers of Listeria on shells, flesh and whole prawn controls were determined. Prawns were exposed to crystal violet dye to assess the penetration of liquids. Regardless of preparation method or bacterial strain there were ca 1log(10) CFU more Listeria per shell than per peeled prawn. Dye was able to penetrate to the flesh in all cases. Conclusions: Shell-on prawns may be only slightly safer than shell-off prawns. Listeria innocua is an acceptable model for L. monocytogenes in this system. Significance and Impact of the Study: Reduced risk from L. monocytogenes on prawns can only be assured by adequate hygiene or heating.
Resumo:
The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.