52 resultados para BINDING SITES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The explosive growth in biotechnology combined with major advancesin information technology has the potential to radically transformimmunology in the postgenomics era. Not only do we now have readyaccess to vast quantities of existing data, but new data with relevanceto immunology are being accumulated at an exponential rate. Resourcesfor computational immunology include biological databases and methodsfor data extraction, comparison, analysis and interpretation. Publiclyaccessible biological databases of relevance to immunologists numberin the hundreds and are growing daily. The ability to efficientlyextract and analyse information from these databases is vital forefficient immunology research. Most importantly, a new generationof computational immunology tools enables modelling of peptide transportby the transporter associated with antigen processing (TAP), modellingof antibody binding sites, identification of allergenic motifs andmodelling of T-cell receptor serial triggering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NMDA receptors are well known to play an important role in synaptic development and plasticity. Functional NMDA receptors are heteromultimers thought to contain two NR1 subunits and two or three NR2 subunits. In central neurons, NMDA receptors at immature glutamatergic synapses contain NR2B subunits and are largely replaced by NR2A subunits with development. At mature synapses, NMDA receptors are thought to be multimers that contain either NR1/NR2A or NR1/NR2A/NR2B subunits, whereas receptors that contain only NR1/NR2B subunits are extrasynaptic. Here, we have studied the properties of NMDA receptors at glutamatergic synapses in the lateral and central amygdala. We find that NMDA receptor-mediated synaptic currents in the central amygdala in both immature and mature synapses have slow kinetics and are substantially blocked by the NR2B-selective antagonists (1S, 2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propano and ifenprodil, indicating that there is no developmental change in subunit composition. In contrast, at synapses on pyramidal neurons in the lateral amygdala, whereas NMDA EPSCs at immature synapses are slow and blocked by NR2B-selective antagonists, at mature synapses their kinetics are faster and markedly less sensitive to NR2B-selective antagonists, consistent with a change from NR2B to NR2A subunits. Using real-time PCR and Western blotting, we show that in adults the ratio of levels of NR2B to NR2A subunits is greater in the central amygdala than in the lateral amygdala. These results show that the subunit composition synaptic NMDA receptors in the lateral and central amygdala undergo distinct developmental changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The identification of Myb 'target' genes will not only aid in the understanding of how overexpression of Myb, or expression of activated forms of Myb, leads to cellular transformation but will also shed light on its role in normal cells. Using a combination of an estrogen-regulated Myb-transformed cell line (ERMYB) and PCR-based subtractive hybridization, we have identified the gene (GSTM1) encoding the detoxification enzyme glutathione S-transferase M1 as being transcriptionally upregulated by Myb. Functional analysis of the GSTM1 promoter using reporter assays indicated that both the DNA binding and transactivation domains of Myb were required for transcriptional activation. Mutational analysis of consensus Myb-binding sites (MBS) in the promoter and electrophoretic mobility gel shift analysis indicated that one of the three potential MBS can bind Myb protein, and is the primary site involved in the regulation of this promoter by Myb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular condition affecting approximately one in 3500 live male births resulting from the lack of the myocyte protein dystrophin. The absence of dystrophin in cardiac myocytes is associated with calcium overload which in turn activates calcium-dependent proteolytic enzymes contributing to congestive heart failure, muscle necrosis and fibrosis. To date, the basis for the calcium overload has not been determined. Since L-type calcium channels are a major mediator of calcium influx we determined their potential contribution to the calcium overload. Male muscular dystrophy (mdx) mice and control C57BL10ScSn (C57) mice aged 12– 16 weeks were used in all experiments. In tissue bath studies, isolated contracting left atria from mdx revealed a reduced potency to the dihydropyridine (DHP) agonist BayK8644 and antagonist nifedipine (P < 0.05). Similarly, radioligand binding studies using the DHP antagonist [3H]-PN 200-110 showed a reduced potency (P < 0.05) in isolated membranes, associated with an increased receptor density (P < 0.05). The increased receptor density was supported by RT-PCR experiments revealing increased RNAfor the DHP receptor. Patch clamp studies revealed the presence of a diltiazem sensitive calcium current that showed delayed inactivation in isolated mdx myocytes (P < 0.01). In conclusion, the increased number of DHP binding sites and the delay in L-type current inactivation may both contribute to increased calcium influx and hence calcium overload in the dystrophin deficient mdx cardiac myocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 19-amino acid conopeptide (rho-TIA) was shown previously to antagonize noncompetitively alpha(1B)-adrenergic receptors (ARs). Because this is the first peptide ligand for these receptors, we compared its interactions with the three recombinant human alpha(1)-AR subtypes (alpha(1A), alpha(1B), and alpha(1D)). Radioligand binding assays showed that rho-TIA was 10-fold selective for human alpha(1B)- over alpha(1A)- and alpha(1D)-ARs. As observed with hamster alpha(1B)-ARs, rho-TIA decreased the number of binding sites (B-max) for human alpha(1B)-ARs without changing affinity (K-D), and this inhibition was unaffected by the length of incubation but was reversed by washing. However, rho-TIA had opposite effects at human alpha(1A)-ARs and alpha(1D)-ARs, decreasing KD without changing Bmax, suggesting it acts competitively at these subtypes. rho-TIA reduced maximal NE-stimulated [H-3] inositol phosphate formation in HEK293 cells expressing human alpha(1B)-ARs but competitively inhibited responses in cells expressing alpha(1A)- or alpha(1D)-ARs. Truncation mutants showed that the amino-terminal domains of alpha(1B)- or alpha(1D)-ARs are not involved in interaction with rho-TIA. Alanine-scanning mutagenesis of rho-TIA showed F18A had an increased selectivity for alpha(1B)-ARs, and F18N also increased subtype selectivity. I8A had a slightly reduced potency at alpha(1B)-ARs and was found to be a competitive, rather than noncompetitive, inhibitor in both radioligand and functional assays. Thus rho-TIA noncompetitively inhibits alpha(1B)-ARs but competitively inhibits the other two subtypes, and this selectivity can be increased by mutation. These differential interactions do not involve the receptor amino termini and are not because of the charged nature of the peptide, and isoleucine 8 is critical for its noncompetitive inhibition at alpha(1B)-ARs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular mechanism by which polydnaviruses of endoparasitoid wasps disrupt cell-mediated encapsulation reactions of host insects is largely unknown. Here we show that a polydnavirus-encoded protein, produced from baculovirus and plasmid expression vectors, prevents cell surface exposure of lectin-binding sites and microparticle formation during immune stimulation of haemocytes. The inactivation of immune-related cellular processes by this protein was analysed using a specific lectin and annexin V and shown to be virtually identical to polydnavirus-mediated effects on haemocytes. Cytochalasin D application has similar effects on haemocytes, suggesting that the immune suppression by the polydnavirus protein is caused by the destabilization of actin filaments. Since the exposure of cell surface glycoproteins and the formation of microparticles are part of an immune response to foreign objects or microorganisms and a prerequisite for cell-mediated encapsulation of microorganisms and parasites, the virus-encoded protein may become an important tool for the inactivation of cellular immune reactions in insects and an essential component in understanding immune suppression in parasitized host insects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antibodies were raised against specific peptides from N-terminal regions of the alpha (1) and alpha (3) isoforms of the GABA(A) receptor, and used to assess the relative expression of these proteins in the superior frontal and primary motor cortices of 10 control, nine uncomplicated alcoholic and six cirrhotic alcoholic cases were matched for age and post-mortem delay. The regression of expression on post-mortem delay was not statistically significant for either isoform in either region. In both cortical areas, the regression of a, expression on age differed significantly between alcoholic cases, which showed a decrease, and normal controls, which did not. Age had no effect on alpha (3) expression. The alpha (1) and alpha (3) isoforms were found to be expressed differentially across cortical regions and showed a tendency to be expressed differentially across case groups. In cirrhotic alcoholics, alpha (1) expression was greater in superior frontal than in motor cortex, whereas this regional difference was not significant in controls or uncomplicated alcoholics. In uncomplicated alcoholics, alpha (3) expression was significantly lower in superior frontal than in motor cortex. Expression of alpha (1) was significantly different from that Of alpha (3) in the superior frontal cortex of alcoholics, but not in controls. In motor cortex, there were no significant differences in expression between the isoforms in any case group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In humans, hydromorphone (HMOR) is metabolised principally by conjugation with glucuronic acid to form hydromorphone-3-glucuronide (H3G), a close structural analogue of morphine-3-glucuronide (M3G), the major metabolite of morphine. In a previous study we described the biochemical synthesis of H3G together with a preliminary evaluation of its pharmacology which revealed that it is a neuro-excitant in rats in a manner analogous to M3G. Thus the aims of the current study were to quantify the neuro-excitatory behaviours evoked by intracerebroventricular (icv) H3G in the rat and to define its potency relative to M3G. Groups of adult male Sprague-Dawley rats received icy injections (1 muL) of H3G (1 - 3 mug), M3G (2 - 7 mug) or vehicle via a stainless steel guide cannula that had been implanted stereotaxically seven days prior to drug administration. Behavioural excitation was monitored by scoring fifteen different behaviours (myoclonic jerks, chewing, wet-dog-shakes, rearing, tonic-clonic-convulsions, explosive motor behaviour, grooming, exploring, general activity, eating, staring, ataxia, righting reflex, body posture, touch evoked agitation) immediately prior to icy injection and at the following post-dosing times: 5, 15, 25, 35, 50, 65 and 80 min. H3G produced dose-dependent behavioural excitation in a manner analogous to that reported previously for M3G by our laboratory and reproduced herein. H3G was found to be approximately 2.5-fold more potent than M3G, such that the mean (+/- S.D.) ED50 values were 2.3 (+/- 0.1) mug and 6.1 (+/- 0.6) mug respectively. Thus, our data clearly imply that if H3G crosses the BBB with equivalent efficiency to M3G, then the myoclonus, allodynia and seizures observed in some patients dosed chronically with large systemic doses of HMOR, are almost certainly due to the accumulation of sufficient H3G in the central nervous system, to evoke behavioural excitation. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha (1) homomeric and alpha (1)beta heteromeric glycine receptors (GlyRs), At low (0.03 muM) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (greater than or equal to0.03 muM) concentrations it irreversibly activated both alpha (1) homomeric and alpha (1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin, Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The c fins gene encodes the receptor for macrophage colony-stimulating factor-1. This gene is expressed selectively in the macrophage cell lineage. Previous studies have implicated sequences in intron 2 that control transcript elongation in tissue-specific and regulated expression of c -fms. Four macrophage-specific deoxyribonuclease I (DNase I)-hypersensitive sites (DHSS) were identified within mouse intron 2. Sequences of these DHSS were found to be highly conserved compared with those in the human gene. A 250-bp region we refer to as the fins intronic regulatory element (FIRE), which is even more highly conserved than the c-fins proximal promoter, contains many consensus binding sites for macrophage-expressed transcription factors including Spl, PU.1, and C/EBP. FIRE was found to act as a macrophage-specific enhancer and as a promoter with an antisense orientation preference in transient transfections. In stable transfections of the macrophage line RAW264, as well as in clones selected for high and low-level c -fms mRNA expression, the presence of intron 2 increased the frequency and level of expression of reporter genes compared with those attained using the promoter alone. Removal of FIRE abolished reporter gene expression, revealing a suppressive activity in the remaining intronic sequences. Hence, FIRE is shown to be a key regulatory element in the fins gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microphthalmia transcription factor (MITF), a basic-helix-loop-helix zipper factor, regulates distinct target genes in several cell types. We hypothesized that interaction with the Ets family factor PU.1, whose expression is limited to hematopoietic cells, might be necessary for activation of target genes like tartrate-resistant acid phosphatase (TRAP) in osteoclasts. Several lines of evidence were consistent with this model. The combination of MITF and PU.1 synergistically activated the TRAP promoter in transient assays. This activation was dependent on intact binding sites for both factors in the TRAP promoter. MITF and PU.1 physically interacted when coexpressed in COS cells or in vitro when purified recombinant proteins were studied. The minimal regions of MITF and PU.1 required for the interaction were the basic-helix-loop-helix zipper domain and the Ets DNA binding domain, respectively. Significantly, mice heterozygous for both the mutant mi allele and a PU.1 null allele developed osteopetrosis early in life which resolved with age. The size and number of osteoclasts were not altered in the double heterozygous mutant mice, indicating that the defect lies in mature osteoclast function. Taken in total, the results afford an example of how lineage-specific gene regulation can be achieved by the combinatorial action of two broadly expressed transcription factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The selective loss of neurones in a range of neurodegenerative diseases is widely thought to involve the process of excitotoxicity, in which glutamate-mediated neuronal killing is elaborated through the excessive stimulation of cell-surface receptors. Every such disease exhibits a distinct regional and subregional pattern of neuronal loss. so processes must be locally triggered to different extents to account for this. We have studied several mechanisms which could lead to excitotoxic glutamate pathophysiology and compared them in different diseases. Our data suggest that glutamate can reach toxic extracellular levels in Alzheimer disease by malfunctions in cellular transporters, and that the toxicity may be exacerbated by continued glutamate release from presynaptic neurones acting on hypersensitive postsynaptic receptors. Thus the excitotoxicity is direct. In contrast, alcoholic brain damage arises in regions where GABA-mediated inhibition is deficient, and fails properly to dampen trans-synaptic excitation, Thus the excitotoxicity is indirect. A variety of such mechanisms is possible, which may combine in different ways.