56 resultados para Antisense oligonucleotide
Resumo:
Transcripts that lack any protein-coding potential represent at least half of the identified elements transcriptome. We review the evidence for the existence of such transcripts in the mammalian transcriptome, and argue that there may be many more noncoding RNAs (ncRNAs) still to be discovered. Relatively few ncRNA “genes” have been ascribed a function based upon mutation analysis. The review discusses possible roles of ncRNAs as cis-acting and trans-acting elements in epigenetic transcriptional control, including monoallelic gene silencing and imprinting. We also consider the evidence that the production of ncRNAs is a common feature of transcriptional enhancers.
Resumo:
To identify possible associations between host genetic factors and the onset of liver fibrosis following Schistosoma japonicum infection, the major histocompatibility class II alleles of 84 individuals living on an island (Jishan) endemic for schistosomiasis japonica in the Poyang Lake Region of Southern China were determined. Forty patients exhibiting advanced schistosomiasis, characterised by extensive liver fibrosis, and 44 age and sex-matched control subjects were assessed for the class II haplotypes HLA-DRBI and HLA-DQB1. Two HLA-DRB1 alleles, HLA-DRB1*0901 (P = 0.012) and *1302 (P = 0.039), and two HLA-DQB1 alleles, HLA-DQB1*0303 (P = 0.012) and *0609 (P = 0.037), were found to be significantly associated with susceptibility to fibrosis. These associated DRB1 and DQB1 alleles are in very strong linkage disequilibrium, with DRB1*0901-DQB1*0303 and DRB1*1302-DQB1*0609 found as: common haplotypes in this population. In contrast, the alleles HLA-DRB1*1501 (P = 0.025) and HLA-DQB 1*0601 (P = 0.022) were found to be associated with resistance to hepatosplenic disease. Moreover, the alleles DQB1*0303 and DRB1*0901 did not increase susceptibility in the presence of DQB1*0601, indicating that DQB1*0601 is dominant over DQB1*0303 and DRB1*0901. The study has thus identified both positive and negative associations between HLA class II alleles and the risk of individuals developing moderate to severe liver fibrosis following schistosome infection. (C) 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Rapid access to genetic information is central to the revolution presently occurring in the pharmaceutical industry, particularly In relation to novel drug target identification and drug development. Genetic variation, gene expression, gene function and gene structure are just some of the important research areas requiring efficient methods of DNA screening. Here, we highlight state-of-the-art techniques and devices for gene screening that promise cheaper and higher-throughput yields than currently achieved with DNA microarrays. We include an overview of existing and proposed bead-based strategies designed to dramatically increase the number of probes that can be interrogated in one assay. We focus, in particular, on the issue of encoding and/or decoding (bar-coding) large bead-based libraries for HTS.
Resumo:
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular Information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability In three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced similar to 50 scoreable polymorphic DNA markers, between individuals of three Independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from Individual DNA samples that had been combined to create the bulked samples.
Resumo:
1. Recent findings have suggested a significant involvement of the immune system in the control of pain. Immune cells contain opioid peptides that are released within inflamed tissue and act at opioid receptors on peripheral sensory nerve endings. It is also apparent that different types of lymphocytes contain P-endorphin, memory T cells containing more beta -endorphin than naive cells. 2. These findings highlight an integral link between immune cell migration and inflammatory pain, The present review highlights immune system involvement in the site-directed control of inflammatory pain. 3. Full-length mRNA transcripts for opioid precursor proteins are expressed in immune cells. Increased expression of pro-opiomelanocortin mRNA and beta -endorphin has been demonstrated in stimulated lymphocytes and lymphocytes from animals with inflammation. 4. Cytokines and corticotropin-releasing factor (CRF) release opioids from immune cells, Potent peripheral analgesia due to direct injection of CRF can be blocked by antagonists to CRF, antibodies to opioid peptides, antisense to CRF and opioid receptor-specific antagonists. The release of opioid peptides from lymphocytes is calcium dependent and opioid receptor specific. Furthermore, endogenous sources of opioid peptides produce potent analgesia when implanted into the spinal cord. 5. Activated immune cells migrate directly to inflamed tissue using cell adhesion molecules to adhere to the epithelial surface of the vasculature in inflamed tissue. Lymphocytes that have been activated can express opioid peptides, Memory type T cells that contain opioid peptides are present within inflamed tissue; naive cells are not present in inflamed tissue and do not contain opioid peptides, Inhibiting the migration of memory type T cells into inflamed tissue by blocking selectins results in reduced numbers of beta -endorphin containing cells, a reduced quantity of beta -endorphin in inflamed paws and reduced stress- and CRF-induced peripheral analgesia. 6. Immunosuppression is associated with increased pain in patients. Moreover, immunosuppression results in decreased lymphocyte numbers as well as decreased analgesia in animal models.
Resumo:
Ataxia-telangiectasia (A-T) is characterised by hypersensitivity to ionising radiation (IR), immunodeficiency, neurodegeneration and predisposition to malignancy. Mutations in the A-T gene (ATM) often result in reduced levels of ATM protein and/or compromise ATM function. IR induced DNA damage is known to rapidly upregulate ATM kinase activity/phosphorylation events in the control of cell cycle progression and other processes. Variable expression of ATM levels in different tissues and its upregulation during cellular proliferation indicate that the level of ATM is also regulated by mechanisms other than gene mutation. Here, we report on the IR induction of ATM protein levels within a number of different cell types and tissues. Induction had begun within 5 min and peaked within 2 h of exposure to 2 Gy of IR, suggesting a rapid post-translational mechanism. Low basal levels of ATM protein were more responsive to IR induction compared to high ATM levels in the same cell type. Irradiation of fresh skin biopsies led to an average three-fold increase in ATM levels while immunohistochemical analyses indicated low expressing cells within the basal layer with ten-fold increases in ATM levels following IR. ATM high expressing lymphoblastoid cell lines (LCLs) which were initially resistant to the radiation-induction of ATM levels also became responsive to IR after ATM antisense expression was used to reduce the basal levels of the protein. These results demonstrate that ATM is present in variable amounts in different tissue/cell types and where basal levels are low ATM levels can be rapidly induced by IR to saturable levels specific for different cell types. ATM radiation-induction is a sensitive and rapid radioprotective response that complements the IR mediated activation of ATM.
Resumo:
FAM is a developmentally regulated substrate-specific deubiquitylating enzyme. It binds the cell adhesion and signalling molecules beta -catenin and A-F-6 in vitro, and stabilises both in mammalian cell culture. To determine if FAM is required at the earliest stages of mouse development we examined its expression and function in preimplantation mouse embryos. FAM is expressed at all stages of preimplantation development from ovulation to implantation. Exposure of two-cell embryos to FAM-specific antisense, but not sense, oligodeoxynucleotides resulted in depletion of the FAM protein and failure Of the embryos to develop to blastocysts. Loss of FAM had two physiological effects, namely, a decrease in cleavage rate and an inhibition of cell adhesive events. Depletion of FAM protein was mirrored by a loss of beta -catenin such that very little of either protein remained following 72 h culture. The residual beta -catenin was localised to sites of cell-cell contact suggesting that the cytoplasmic pool of beta -catenin is stabilised by FAM. Although AF-6 levels initially decreased they returned to normal. However, the nascent protein was mislocalised at the apical surface of blastomeres. Therefore FAM is required for preimplantation mouse embryo development and regulates beta -catenin and AF-6 in vivo. (C) 2001 Elsevier Science Ireland Lid. All rights reserved.
Resumo:
We report a further characterization of the genomic region containing the soybean supernodulation gene NTS-1. We performed a search for new markers linked to NTS-1 by combining DNA amplification fingerprinting (DAF) and bulked segregant analysis (BSA). The search resulted in one cloned polymorphism (B44-456) linked in trans, 8.5cM from the locus. Southern hybridization showed duplication of the B44-456 sequence in the soybean genome. Additionally, a DNA database search revealed one Arabidopsis thaliana genomic clone from chromosome I possessing 62% homology to the B44-456 marker. A relatively low number of polymorphisms were identified by several PCR marker technologies for this soybean genomic region, providing an additional support for its highly conserved and/or duplicated organization.
Resumo:
GCR1 has been tentatively identified in Arabidopsis thaliana as the first plant G-protein coupled receptor (GPCR) (Josefsson and Rask 1997) implicated in the cytokinin sensory pathway (Plakidou-Dymock et al. 1998). A protein fusion of GCR1 and green fluorescent protein has been expressed in Arabidopsis and shown GCR1 to be located on the plasma membrane. Studies of plants with altered GCR1 expression have led us to question GCR1's involvement in cytokinin signaling. Transgenic Arabidopsis plants containing sense and antisense constructs for GCR1 have been produced and over- and under-expression confirmed. The analysis of 12 antisense and 17 sense lines has failed to reveal the previously reported Dainty phenotype or altered cytokinin sensitivity. We have used the Gauntlet approach to test the plants' response to various plant hormones although this has not yet identified a mutant phenotype. The yeast-two hybrid system has been used and so far there is no evidence to suggest GCR1 interacts with heterotrimeric G proteins. Before GCR1 can be identified as genuine G-protein coupled receptor, the identification of a ligand and a proof of association with heterotrimeric G-proteins should be obtained.
A highly conserved c-fms gene intronic element controls macrophage-specific and regulated expression
Resumo:
The c fins gene encodes the receptor for macrophage colony-stimulating factor-1. This gene is expressed selectively in the macrophage cell lineage. Previous studies have implicated sequences in intron 2 that control transcript elongation in tissue-specific and regulated expression of c -fms. Four macrophage-specific deoxyribonuclease I (DNase I)-hypersensitive sites (DHSS) were identified within mouse intron 2. Sequences of these DHSS were found to be highly conserved compared with those in the human gene. A 250-bp region we refer to as the fins intronic regulatory element (FIRE), which is even more highly conserved than the c-fins proximal promoter, contains many consensus binding sites for macrophage-expressed transcription factors including Spl, PU.1, and C/EBP. FIRE was found to act as a macrophage-specific enhancer and as a promoter with an antisense orientation preference in transient transfections. In stable transfections of the macrophage line RAW264, as well as in clones selected for high and low-level c -fms mRNA expression, the presence of intron 2 increased the frequency and level of expression of reporter genes compared with those attained using the promoter alone. Removal of FIRE abolished reporter gene expression, revealing a suppressive activity in the remaining intronic sequences. Hence, FIRE is shown to be a key regulatory element in the fins gene.
Resumo:
Previous studies have shown that Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) is uniquely able to up-regulate the expression of the peptide transporters (referred to as TAP-1 and TAP-2) and major histocompatibility complex (MHC) class I in Burkitt's lymphoma (BL) cell lines. This up-regulation is often accompanied by a restoration of antigen-presenting function as measured by the ability of these cells to present endogenously expressed viral antigen to cytotoxic T lymphocytes. Here we show that the expression of LMP1 resulted in up-regulation and nuclear translocation of RelB that were coincident with increased expression of MHC class I in BL cells. Deletion of the C-terminal activator regions (CTARs) of LMP1 significantly impaired the abilities of LMP1 to translocate RelB into the nucleus and to up-regulate the expression of antigen-processing genes. Further analysis with single-point mutations within the CTARs confirmed that the residues critical for NF-kappaB activation directly contribute to antigen-processing function regulation in BL cells. This LMP1-mediated effect was blocked following expression of either dominant negative IkappaBalpha S32/36A, an NF-kappaB inhibitor, or antisense RelB. These observations indicate that upregulation of antigen-presenting function in B cells mediated by LMP1 is signaled through the NF-kappaB subunit RelB. The data provide a mechanism by which LMP1 modulates immunogenicity of Epstein-Barr virus-infected normal and malignant cells.
Resumo:
A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67+/-13.86 mg P l(-1) was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04+/-1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 mum) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 mum) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria , but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.
Resumo:
Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-beta-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 1.8% P (sludge Q) and 1.5% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 99.7% identical, forming a cluster in the gamma-Proteobacteria radiation. The T sludge library comprised eight OTUs and the majority of clones were Acidobacteria subphylum 4 (49% of the library) and candidate phylum OPU (39% of the library). One OTU (two clones, of which one was sequenced) was in the gamma-Proteobacteria radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the gamma-Proteobacteria clone sequences for use in fluorescence in situ hybridization (FISH); 92 % of the Q sludge bacteria and 28 % of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel gamma-Proteobacteria cluster were phenotypically GAOs in one laboratory-scale SBR and two fullscale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the gamma-Proteobacteria radiation be named 'Candidatus Competibacter phosphatis'.
Resumo:
A repetitive DNA motif was used as a marker to identify novel genes in the mucosal pathogen Moraxella catarrhalis. There is a high prevalence of such repetitive motifs in virulence genes that display phase variable expression. Two repeat containing loci were identified using a digoxigenin-labelled 5'-(CAAC)(6)-3' oligonucleotide probe. The repeats are located in the methylase components of two distinct type III restriction-modification (R-M) systems. We suggest that the phase variable nature of these R-M systems indicates that they have an important role in the biology of M. catarrhalis. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies.
Resumo:
Studies with the myogenic basic helix-loop-helix and MADS box factors suggest that efficient transactivation is dependent on the recruitment of the steroid receptor coactivator (SRC) and the cofactors p300 and p300/CBP-associated factor. SRCs have been demonstrated to recruit CARM1 (coactivator-associated arginine methyltransferase-1), a member of the S-adenOSyl-L-methionine-dependent PRMTI-5 (protein-arginine N-methyltransferase-1-5) family, which catalyzes the methylation of arginine residues. This prompted us to investigate the functional role of CARM1/PRMT4 during skeletal myogenesis. We demonstrate that CARM1 and the SRC cofactor GRIP-1 cooperatively stimulate the activity of myocyte enhancer factor-2C (MEF2C). Moreover, there are direct interactions among MEF2C, GRIP-1, and CARM1. Chromatin immunoprecipitation demonstrated the in vivo recruitment of MEF2 and CARM1 to the endogenous muscle creatine kinase promoter in a differentiation-dependent manner. Furthermore, CARM1 is expressed in somites during embryogenesis and in the nuclei of muscle cells. Treatment of myogenic cells with the methylation inhibitor adenosine dialdehyde or tet-regulated CARM1 antisense expression did not affect expression of MyoD. However, inhibition of CARM1. inhibited differentiation and abrogated the expression of the key transcription factors (myogenin and MEF2) that initiate the differentiation cascade. This work clearly demonstrates that the arginine methyltransferase CARM1 potentiates myogenesis and supports the positive role of arginine methylation in mammalian differentiation.