50 resultados para 230102 Number Theory And Field Theory
Resumo:
A theory is developed for calculating the entrapment of particles by a windbreak, with four results. (1) The fraction of particles in the oncoming flow which pass through the windbreak, or transmittance of the windbreak for particles (sigma), is related to the optical porosity (tau). The very simple approximation sigma=tau works well for most applications involving the interception of spray droplets by windbreaks. Results from a field experiment agree with the theoretical predictions. (2) A new equation for the bulk drag coefficient of a windbreak is tested against numerical, wind tunnel and field experiments. This enables the bleed velocity for the flow through the windbreak to be predicted in terms of the screen pressure coefficient (k) of the barrier. (3) The relationship between k and tau is different for a vegetative barrier than for a screen across a confined duct, implying a lower Fc for given tau. (4) The total deposition of particles to a windbreak is determined by a trade-off between particle absorption and throughflow, implying an optimum value of tau for maximum total deposition. For particles larger than 30 mum and vegetation elements smaller than 30 mm, this occurs near tau = 0.2. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, nonuniform static magnetic fields outside the central imaging region, in which the movement of the body may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced electric fields and currents in the patient when moving into the MRI scanner and also for head motion at various positions in the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively shielded 4T magnet system are used and the body model projected through the field profile with a range of velocities. The simulation shows that it possible to induce electric fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are extrapolated to very high field strengths and tabulated data shows the expected induced currents and fields with both movement velocity and field strength. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
We have used the Two-Degree Field (2dF) instrument on the Anglo-Australian Telescope (AAT) to obtain redshifts of a sample of z < 3 and 18.0 < g < 21.85 quasars selected from Sloan Digital Sky Survey (SDSS) imaging. These data are part of a larger joint programme between the SDSS and 2dF communities to obtain spectra of faint quasars and luminous red galaxies, namely the 2dF-SDSS LRG and QSO (2SLAQ) Survey. We describe the quasar selection algorithm and present the resulting number counts and luminosity function of 5645 quasars in 105.7 deg(2). The bright-end number counts and luminosity functions agree well with determinations from the 2dF QSO Redshift Survey (2QZ) data to g similar to 20.2. However, at the faint end, the 2SLAQ number counts and luminosity functions are steeper (i.e. require more faint quasars) than the final 2QZ results from Croom et al., but are consistent with the preliminary 2QZ results from Boyle et al. Using the functional form adopted for the 2QZ analysis ( a double power law with pure luminosity evolution characterized by a second-order polynomial in redshift), we find a faint-end slope of beta =-1.78 +/- 0.03 if we allow all of the parameters to vary, and beta =-1.45 +/- 0.03 if we allow only the faint-end slope and normalization to vary (holding all other parameters equal to the final 2QZ values). Over the magnitude range covered by the 2SLAQ survey, our maximum-likelihood fit to the data yields 32 per cent more quasars than the final 2QZ parametrization, but is not inconsistent with other g > 21 deep surveys for quasars. The 2SLAQ data exhibit no well-defined 'break' in the number counts or luminosity function, but do clearly flatten with increasing magnitude. Finally, we find that the shape of the quasar luminosity function derived from 2SLAQ is in good agreement with that derived from Type I quasars found in hard X-ray surveys.
Resumo:
In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.
Resumo:
Rice (Oryza sativa L.) plants are susceptible to low temperature during the young microspore stage, which occurs 10-12 days before heading. Low temperature at this time increases spikelet sterility which can cause massive yield loss. Increasing the cold tolerance of cultivars can reduce yield variability in temperate rice-growing environments. Two experiments were conducted in cold air screenings and two were conducted in cold water screenings to examine genotypic variation for cold tolerance, explore flowering traits related to spikelet sterility, and investigate whether the results reflect the level of cold tolerance determined previously in the field. Cold air screenings imposed day/night temperatures of 27 degrees C/13 degrees C, 25 degrees C/15 degrees C and 32 degrees C/25 degrees C following particle initiation until 50% heading, while cold water screenings maintained a relatively constant 19 degrees C. The variation in the commencement of low air temperature treatment did not have an effect on the level of spikelet sterility, indicating that exposure to low temperature during the young microspore stage was more important than the duration of exposure. Spikelet sterility of common cultivars showed a significant correlation between cold air and cold water screenings (r(2) = 0.63, p < 0.01), cold air and field screenings (r(2) = 0.52, p < 0.01) and cold water and field screenings (r(2) = 0.53, p < 0.01), indicating that cold air and cold water can be used for screening genotypes for low temperature tolerance. HSC55, M 103 and Jyoudeki were identified as cold tolerant and Doongara, Sasanishiki and Nipponbare as susceptible cultivars. There was a significant negative relationship between spikelet sterility and both the number of engorged pollen grains per anther and anther area only after imposing cold air and cold water treatment hence, it was concluded that these flowering traits were facultative in nature. In addition, cultivars originating from Australia and California were inefficient at producing filled grain with similar sized anthers containing a similar number of engorged pollen grains as cultivars from other origins. One suggested reason for this poor conversion to filled grain of cultivars from Australia and California may be associated with their small stigma area, particularly when exposed to low temperature conditions. (c) 2006 Elsevier B.V. All rights reserved.
Number and type of substances in alcohol and drug-related completed suicides in an Australian sample
Resumo:
Background: The association between substance use and suicide is well-established, but evidence is scant regarding the relationship between the number, type, and level of substances and other risk factors in completed suicide across the lifespan. Aims: To examine the relationship between social/demographic characteristics and the number, type, and level of drugs present in an unrestricted age sample of completed suicides in Australia. Method: An analysis was undertaken of 893 substance-related suicides using data from the Government Statistician's Office for the years 1989-1992. Results: The number and type of substances present in suicide victims was related to the individual's gender, age, marital status, employment status, and method of suicide. Blood alcohol level was significantly different between the methods of suicide, but was unrelated to demographic characteristics of the individual. The level of antidepressants and minor tranquilizers in the individuals was also unrelated to demographic characteristics. Conclusion: Examination of the type and number of substances present in completed suicides is an important component in creating profiles of potential suicide victims.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.
Resumo:
Developing a unified classification system to replace four of the systems currently used in disability athletics (i.e., track and field) has been widely advocated. The diverse impairments to be included in a unified system require severed assessment methods, results of which cannot be meaningfully compared. Therefore, the taxonomic basis of current classification systems is invalid in a unified system. Biomechanical analysis establishes that force, a vector described in terms of magnitude and direction, is a key determinant of success in all athletic disciplines. It is posited that all impairments to be included in a unified system may be classified as either force magnitude impairments (FMI) or force control impairments (FCI). This framework would provide a valid taxonomic basis for a unified system, creating the opportunity to decrease the number of classes and enhance the viability of disability athletics.
Resumo:
Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator.
Resumo:
Experiments were conducted to investigate the effect of Lolium rigidum (annual ryegrass) seed developmental stage and application rate of glyphosate and SpraySeed (paraquat 135 g/L+ diquat 115 g/L) on the number, germinability, and fitness of seeds produced. Glyphosate (450 g/L) was most effective when applied at a rate of 0.5-1 L/ha during heading and anthesis, reducing the number of filled seeds produced compared with unsprayed plants. Application post-anthesis, when seeds were at the milk to soft dough stage, was less effective. SpraySeed was most effective when applied post-anthesis, during the milk and early dough stages of seed development at a rate of 0.5-1L/ha, resulting in the production of few viable seeds. Although some filled seeds were produced, most of the seeds were dead. Application during anthesis or once the seeds reached soft dough stage was less effective. For both herbicides, those seeds that were capable of germinating were smaller and had slower radicle and coleoptile growth, resulting in slower early seedling growth and reduced biomass production within the first month of growth. Additionally, glyphosate application reduced the proportion of seeds exhibiting dormancy. The anticipated reduction in seed competitive ability and altered emergence timing resulting from late-season herbicide application, even when application timing is not optimal, could be exploited to reduce the likelihood of successful L. rigidum establishment in the following season.
Resumo:
In a program of laboratory and field research over the last decade, the author has replicated and extended the attribution model of leadership (Green & Mitchell, 1979). This paper reports a cross-national test of the model, in which 172 Australian and 144 Canadian work supervisors' recalled their attributional and evaluative responses to high and low levels of subordinate performance. It was expected that the supervisors' responses would conform to the predictions established in the earlier studies, but that there would be key differences across the cultures. In particular, Australians were expected to endorse more internal attributions for subordinate performance than Canadians, and to focus more on individual characteristics in evaluating performance. Results supported the model's robustness and the hypothesised cross-national differences. The implications of these results are discussed in terms of crosscultural research opportunities, and the need to take account of small but potentially important differences in supervisory styles across cultures.
Resumo:
Abstract: The Murray-Darling Basin comprises over 1 million km2; it lies within four states and one territory; and over 12, 800 GL of irrigation water is used to produce over 40% of the nation's gross value of agricultural production. This production is used by a diverse collection of some-times mutually exclusive commodities (e.g. pasture; stone fruit; grapes; cotton and field crops). The supply of water for irrigation is subject to climatic and policy uncertainty. Variable inflows mean that water property rights do not provide a guaranteed supply. With increasing public scrutiny and environmental issues facing irrigators, greater pressure is being placed on this finite resource. The uncertainty of the water supply, water quality (salinity), combined with where water is utilised, while attempting to maximising return for investment makes for an interesting research field. The utilisation and comparison of a GAMS and Excel based modelling approach has been used to ask: where should we allocate water?; amongst what commodities?; and how does this affect both the quantity of water and the quality of water along the Murray-Darling river system?
Resumo:
Leaf water potential (psi (l)) represents a good indicator of the water status of plants, and continuous monitoring of it can be useful in research and field applications such as scheduling irrigation. Changes in stem diameter (Sd) were used for monitoring psi (l) of pot-grown sorghum [Sorghum bicolor (L.) Moench] plants in a glasshouse. This method requires occasional calibration of S-d values against psi (l). Predicted values of psi (l), based on a single calibration show a good correlation with measured psi (l), values over a period of 13 d before and after the calibration. The correlation can further be improved with shorter time intervals.