296 resultados para structure prediction
Resumo:
The majority of past and current individual-tree growth modelling methodologies have failed to characterise and incorporate structured stochastic components. Rather, they have relied on deterministic predictions or have added an unstructured random component to predictions. In particular, spatial stochastic structure has been neglected, despite being present in most applications of individual-tree growth models. Spatial stochastic structure (also called spatial dependence or spatial autocorrelation) eventuates when spatial influences such as competition and micro-site effects are not fully captured in models. Temporal stochastic structure (also called temporal dependence or temporal autocorrelation) eventuates when a sequence of measurements is taken on an individual-tree over time, and variables explaining temporal variation in these measurements are not included in the model. Nested stochastic structure eventuates when measurements are combined across sampling units and differences among the sampling units are not fully captured in the model. This review examines spatial, temporal, and nested stochastic structure and instances where each has been characterised in the forest biometry and statistical literature. Methodologies for incorporating stochastic structure in growth model estimation and prediction are described. Benefits from incorporation of stochastic structure include valid statistical inference, improved estimation efficiency, and more realistic and theoretically sound predictions. It is proposed in this review that individual-tree modelling methodologies need to characterise and include structured stochasticity. Possibilities for future research are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The current prediction or genes in the Plasmodium falciparum genome database relies upon a limited number of specially developed computer algorithms. We have re-annotated the sequence of chromosome 2 of P. falciparum by a computer-assisted manual analysis. which is described here. Of 161 newly predicted introns, we have experimentally confirmed 98. We regard 110 introns from the previously published analyses as probable, we delete 3, change 26 and add 135. We recognise 214 genes in chromosome 2. We have predicted introns in 121 genes. The increased complexity or gene structure on chromosome 2 is likely to be mirrored by the entire genome. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A generalised model for the prediction of single char particle gasification dynamics, accounting for multi-component mass transfer with chemical reaction, heat transfer, as well as structure evolution and peripheral fragmentation is developed in this paper. Maxwell-Stefan analysis is uniquely applied to both micro and macropores within the framework of the dusty-gas model to account for the bidisperse nature of the char, which differs significantly from the conventional models that are based on a single pore type. The peripheral fragmentation and random-pore correlation incorporated into the model enable prediction of structure/reactivity relationships. The occurrence of chemical reaction within the boundary layer reported by Biggs and Agarwal (Chem. Eng. Sci. 52 (1997) 941) has been confirmed through an analysis of CO/CO2 product ratio obtained from model simulations. However, it is also quantitatively observed that the significance of boundary layer reaction reduces notably with the reduction of oxygen concentration in the flue gas, operational pressure and film thickness. Computations have also shown that in the presence of diffusional gradients peripheral fragmentation occurs in the early stages on the surface, after which conversion quickens significantly due to small particle size. Results of the early commencement of peripheral fragmentation at relatively low overall conversion obtained from a large number of simulations agree well with experimental observations reported by Feng and Bhatia (Energy & Fuels 14 (2000) 297). Comprehensive analysis of simulation results is carried out based on well accepted physical principles to rationalise model prediction. (C) 2001 Elsevier Science Ltd. AH rights reserved.
Resumo:
This theoretical note describes an expansion of the behavioral prediction equation, in line with the greater complexity encountered in models of structured learning theory (R. B. Cattell, 1996a). This presents learning theory with a vector substitute for the simpler scalar quantities by which traditional Pavlovian-Skinnerian models have hitherto been represented. Structured learning can be demonstrated by vector changes across a range of intrapersonal psychological variables (ability, personality, motivation, and state constructs). Its use with motivational dynamic trait measures (R. B. Cattell, 1985) should reveal new theoretical possibilities for scientifically monitoring change processes (dynamic calculus model; R. B. Cattell, 1996b), such as encountered within psycho therapeutic settings (R. B. Cattell, 1987). The enhanced behavioral prediction equation suggests that static conceptualizations of personality structure such as the Big Five model are less than optimal.
Resumo:
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serine/threonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Resumo:
Scorpion toxins are common experimental tools for studies of biochemical and pharmacological properties of ion channels. The number of functionally annotated scorpion toxins is steadily growing, but the number of identified toxin sequences is increasing at much faster pace. With an estimated 100,000 different variants, bioinformatic analysis of scorpion toxins is becoming a necessary tool for their systematic functional analysis. Here, we report a bioinformatics-driven system involving scorpion toxin structural classification, functional annotation, database technology, sequence comparison, nearest neighbour analysis, and decision rules which produces highly accurate predictions of scorpion toxin functional properties. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of peptide specificity of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Motivation: Targeting peptides direct nascent proteins to their specific subcellular compartment. Knowledge of targeting signals enables informed drug design and reliable annotation of gene products. However, due to the low similarity of such sequences and the dynamical nature of the sorting process, the computational prediction of subcellular localization of proteins is challenging. Results: We contrast the use of feed forward models as employed by the popular TargetP/SignalP predictors with a sequence-biased recurrent network model. The models are evaluated in terms of performance at the residue level and at the sequence level, and demonstrate that recurrent networks improve the overall prediction performance. Compared to the original results reported for TargetP, an ensemble of the tested models increases the accuracy by 6 and 5% on non-plant and plant data, respectively.
Resumo:
A multiagent diagnostic system implemented in a Protege-JADE-JESS environment interfaced with a dynamic simulator and database services is described in this paper. The proposed system architecture enables the use of a combination of diagnostic methods from heterogeneous knowledge sources. The process ontology and the process agents are designed based on the structure of the process system, while the diagnostic agents implement the applied diagnostic methods. A specific completeness coordinator agent is implemented to coordinate the diagnostic agents based on different methods. The system is demonstrated on a case study for diagnosis of faults in a granulation process based on HAZOP and FMEA analysis.
Resumo:
Motivation: While processing of MHC class II antigens for presentation to helper T-cells is essential for normal immune response, it is also implicated in the pathogenesis of autoimmune disorders and hypersensitivity reactions. Sequence-based computational techniques for predicting HLA-DQ binding peptides have encountered limited success, with few prediction techniques developed using three-dimensional models. Methods: We describe a structure-based prediction model for modeling peptide-DQ3.2 beta complexes. We have developed a rapid and accurate protocol for docking candidate peptides into the DQ3.2 beta receptor and a scoring function to discriminate binders from the background. The scoring function was rigorously trained, tested and validated using experimentally verified DQ3.2 beta binding and non-binding peptides obtained from biochemical and functional studies. Results: Our model predicts DQ3.2 beta binding peptides with high accuracy [area under the receiver operating characteristic (ROC) curve A(ROC) > 0.90], compared with experimental data. We investigated the binding patterns of DQ3.2 beta peptides and illustrate that several registers exist within a candidate binding peptide. Further analysis reveals that peptides with multiple registers occur predominantly for high-affinity binders.
Resumo:
Scorpion toxins are important experimental tools for characterization of vast array of ion channels and serve as scaffolds for drug design. General public database entries contain limited annotation whereby rich structure-function information from mutation studies is typically not available. SCORPION2 contains more than 800 records of native and mutant toxin sequences enriched with binding affinity and toxicity information, 624 three-dimensional structures and some 500 references. SCORPION2 has a set of search and prediction tools that allow users to extract and perform specific queries: text searches of scorpion toxin records, sequence similarity search, extraction of sequences, visualization of scorpion toxin structures, analysis of toxic activity, and functional annotation of previously uncharacterized scorpion toxins. The SCORPION2 database is available at http://sdmc.i2r.a-star.edu.sg/scorpion/. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using phase-detection probes. Some new signal analysis provided characteristic air-water time and length scales of the vortical structures advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air-water flow structure suggested little bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air-water time scales Txx*V1/d1 of about 0.8 in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4, irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature of the air-water flow
Resumo:
In recent years, the phrase 'genomic medicine' has increasingly been used to describe a new development in medicine that holds great promise for human health. This new approach to health care uses the knowledge of an individual's genetic make-up to identify those that are at a higher risk of developing certain diseases and to intervene at an earlier stage to prevent these diseases. Identifying genes that are involved in disease aetiology will provide researchers with tools to develop better treatments and cures. A major role within this field is attributed to 'predictive genomic medicine', which proposes screening healthy individuals to identify those who carry alleles that increase their susceptibility to common diseases, such as cancers and heart disease. Physicians could then intervene even before the disease manifests and advise individuals with a higher genetic risk to change their behaviour - for instance, to exercise or to eat a healthier diet - or offer drugs or other medical treatment to reduce their chances of developing these diseases. These promises have fallen on fertile ground among politicians, health-care providers and the general public, particularly in light of the increasing costs of health care in developed societies. Various countries have established databases on the DNA and health information of whole populations as a first step towards genomic medicine. Biomedical research has also identified a large number of genes that could be used to predict someone's risk of developing a certain disorder. But it would be premature to assume that genomic medicine will soon become reality, as many problems remain to be solved. Our knowledge about most disease genes and their roles is far from sufficient to make reliable predictions about a patient’s risk of actually developing a disease. In addition, genomic medicine will create new political, social, ethical and economic challenges that will have to be addressed in the near future.