61 resultados para iron accumulation, maternal effect
Resumo:
The effect of iron on the grain refinement of high-purity Mg-3%Al and Mg-91%Al alloys has been investigated using anhydrous FeCl3 as an iron additive at 750degreesC in carbon-free aluminium titanite crucibles. It was shown that grain refinement was readily achievable for both alloys. Fe- and Al-rich intermetallic particles were observed in many magnesium grains. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVES Despite few data, the treatment of syphilis in pregnant women using a single dose of benzathine penicillin is the standard of care in many resource-poor settings. We examined the effect of various doses of benzathine penicillin on pregnancy loss among women with a positive Rapid Plasma Reagin (RPR) test result in a rural South African district. METHODS All pregnant women making their first antenatal care visit during pregnancy were screened for syphilis using the RPR test. Those testing positive were counselled to receive three weekly doses of benzathine penicillin, and received a partner notification card. Pregnancy outcomes were determined from facility records or home visits where necessary. RESULTS Of 8917 women screened, 1043 (12%) had reactive syphilis serology; of those with titre data available, 30% had titres of 1:8 or greater. While 41% (n = 430) of women received all three doses as counselled, 30% (n = 312) received only one dose, and 20% (n = 207) did not return to the clinic to receive treatment. Among the 947 women with pregnancy outcome data available, there were 17 miscarriages and 48 perinatal deaths observed. There was a strong trend towards reduced risk of pregnancy loss among women receiving multiple doses of penicillin (adjusted OR for perinatal mortality for each additional dose received, 0.63; 95% CI, 0.48-0.84). CONCLUSIONS While this association requires further investigation, these results suggest that there may be substantial benefit to providing multiple doses of benzathine penicillin to treat maternal syphilis in this setting.
Resumo:
Mungbean (Vigna radiata L.), as a dryland grain legume, is exposed to varying timing and severity of water deficit, which results in variability in grain yield, nitrogen accumulation and grain quality. In this field study, mungbean crops were exposed to varying timing and severity of water deficit in order to examine: (1) contribution of the second flush of pods to final grain yield with variable timing of relief from water deficit, (2) the sensitivity to water deficit of the accumulation of biomass and nitrogen (N) and its partitioning to grain, and (3) how the timing of water deficit affects the pattern of harvest index (HI) increase through pod filling. The results showed that the contribution of the second flush to final yield is highly variable (1-56%) and can be considerable, especially where mid-season stress is relieved at early pod filling. The capacity to produce a second flush of pods did not compensate fully for yield reduction due to water stress. Relief from mid-season stress also resulted in continued leaf production, N-2 fixation and vegetative biomass accumulation during pod filling. Despite the wide variation in the degree of change in vegetative biomass and N during pod filling, there were strong relationships between grain yield and net-above-ground biomass at maturity, and grain N and above-ground N at maturity. Only in the extreme situations were HI and nitrogen HI affected noticeably. In those treatments where there was a large second flush of pods, there was a pronounced biphasic pattern to pod number production, with HI also progressing through two distinct phases of increase separated by a plateau. The proportion of grain yield contributed to by biomass produced before pod filling varied from 0 to 61% with the contribution greatest under terminal water deficit. There was a larger effect of water deficit on N accumulation, and hence N-2 fixation, than on biomass accumulation. The study confirmed the applicability of a number of long-standing physiological concepts to the analysis of the effect of water deficit on mungbean, but also highlighted the difficulty of accounting for timing effects of water deficit where second flushes of pods alter canopy development, biomass and yield accumulation, and N dynamics. Crown Copyright (C) 2003 Published by Elsevier B.V. All rights reserved.
Resumo:
The effects of alumina and chromite impurities on the liquidus temperatures in the cristobalite/tridymite (SiO2) primary phase fields in the MgO-FeO-SiO, system in equilibrium with metallic iron have been investigated experimentally. Using high temperature equilibration and quenching followed by electron probe X-ray microanalysis (EPMA), liquiclus isotherms have been determined in the temperatures range 1 673 to 1 898 K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO, system at 2, 3 and 5 wt% Al2O3, 2 wt% Cr2O3, and 2 wt% Cr2O3+2 wt% Al2O3. The study enables the liquidus to be described for a range of SiO2/MgO and MgO/FeO ratios. It was found that liquiclus temperatures in the cristobalite and tridymite primary phase fields, decrease significantly with the addition of Al2O3 and Cr2O3.
Resumo:
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The catalytic activities of Ni/gamma-Al2O3 catalysts prepared using different nickel precursor compounds were studied for the reaction of methane reforming with CO2. It is found that the nickel precursor employed in the catalyst preparation plays an important role. The catalyst based on nickel nitrate exhibited higher catalytic activity and stability over a 24-h test period than the other two catalysts derived from nickel chloride and nickel acetylacetonate. A comprehensive characterisation of the catalysts showed that the weak interaction between Ni particles and gamma-Al2O3 resulted in more active sites on Ni nitrate-derived Ni/gamma-Al2O3 catalyst. Coking studies showed that carbon deposition on Ni catalysts derived from inorganic precursors (nitrate and chloride) were more severe than on the organic precursor-derived catalyst. However, the Ni nitrate-derived catalyst was found to have the highest stability (or lowest deactivation rate) mainly due to the active carbon species (-C-C-) of the resulting graphitic structure and their close contact with the metal particles. In contrast, the carbon formed on Ni-AA catalyst (from Ni acetylacetonate) is dominated by inactive -CO-C- species, thus leading to a rapid accumulation of carbon in this catalyst and more severe deactivation. (C) 1998 Elsevier Science B.V.
Resumo:
Previous studies have demonstrated that 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and several other aroylhydrazone chelators possess anti-neoplastic activity due to their ability to bind intracellular iron. In this study we have examined the structure and properties of NIH and its Fe-III complex in order to obtain further insight into its anti-tumour activity. Two tridentate NIH ligands deprotonate upon coordination to Fe-III in a meridional fashion to form a distorted octahedral, high-spin complex. Solution electrochemistry of [Fe(NIH-H)(2)](+) shows that the trivalent oxidation state is dominant over a wide potential range and that the Fe-II analogue is not a stable form of this complex. The fact that [Fe(NIH-H)(2)](+) cannot-cycle between the Fe-II and Fe-III states suggests that the production of toxic free- radical species, e.g. OH. or O2(.-),is not part of this ligand's cytotoxic action. This suggestion is supported by cell culture experiments demonstrating that the addition of Fe-III to NIH prevents its anti-proliferative effect. The chemistry of this chelator and its Fe-III complex are discussed in the context of understanding its anti-tumour activity.
Resumo:
The effect of alumina on the liquidus temperatures of fayalite slags at iron saturation has been investigated experimentally. Equilibrated synthetic slags were quenched, and the samples were subsequently examined using optical microscopy and electron probe microanalysis (EPMA). The isotherms in the fayalite primary field and boundary lines were determined, and the results were presented in the form of pseudo-ternary phase diagrams of FeO-CaO-SiO2 with 0, 2, 4, and 6 wt pet Al2O3 in the slag. The experimental results show that the alumina addition expands the fayalite primary phase field and decreases the liquidus temperatures in the fayalite primary phase field.
Resumo:
Objective: A number, of studies have consistently found that a mother's mental health (particularly her level of depression) is a strong predictor of mental health problems experienced by her child(ren). However, the validity of this finding is in doubt because the majority of these studies have relied on maternal reports as indicators of children's behavior. Method: This prospective, longitudinal study examines data an the mental health of the mother from prior to the birth of her child to when the child reaches 14 years of age. Child behavior is measured at 14 years of age using reports from mother and child. Mother and child responses are compared to provide an indication of the possible magnitude of maternal observation bias in the reporting of child behavior problems. Results: Anxious and/or depressed mothers tend to report more cases of child behavior problems than do their mentally healthy counterparts or children themselves. Differences between mothers and youths In reporting behavior problems appear to be related to the mothers' mental health. Conclusions: Current maternal mental health impairment appears to have a substantial effect on the reporting of child behavior problems by the mother, thereby raising questions about the validity of reports of child behavior by persons who are currently emotionally distressed.
Resumo:
We have grown surfactant-templated silicate films at the air-water interface using n-alkyltrimethylammonium bromide and chloride in an acid synthesis with tetraethyl orthosilicate as the silicate source. The films have been grown with and without added salt (sodium chloride, sodium bromide) and with n-alkyl chain lengths from 12 to 18, the growth process being monitored by X-ray reflectometry. Glassy, hexagonal, and lamellar structures have been produced in ways that are predictable from the pure surfactant-water phase diagrams. The synthesis appears to proceed initially through an induction period characterized by the accumulation of silica-coated spherical micelles near the surface. All syntheses, except those involving C(12)TACl, show a sudden transformation of the spherical micellar phase to a hexagonal phase. This occurs when the gradually increasing ionic strength and/or changing ethanol concentration is sufficient to change the position of boundaries within the phase diagram. A possible mechanism for this to occur may be to induce a sphere to rod transition in the micellar structure. This transformation, as predicted from the surfactant-water phase diagram, can be induced by addition of salts and is slower for chloride than bromide counteranions. The hexagonal materials change in cell dimension as the chain length is changed in a way consistent with theoretical model predictions. All the materials have sufficiently flexible silica frameworks that phase interconversion is observed both from glassy to hexagonal and from hexagonal, to lamellar and vice versa in those surfactant systems where multiple phases are found to exist.