30 resultados para extinction probability
Resumo:
Systematic protocols that use decision rules or scores arc, seen to improve consistency and transparency in classifying the conservation status of species. When applying these protocols, assessors are typically required to decide on estimates for attributes That are inherently uncertain, Input data and resulting classifications are usually treated as though they arc, exact and hence without operator error We investigated the impact of data interpretation on the consistency of protocols of extinction risk classifications and diagnosed causes of discrepancies when they occurred. We tested three widely used systematic classification protocols employed by the World Conservation Union, NatureServe, and the Florida Fish and Wildlife Conservation Commission. We provided 18 assessors with identical information for 13 different species to infer estimates for each of the required parameters for the three protocols. The threat classification of several of the species varied from low risk to high risk, depending on who did the assessment. This occurred across the three Protocols investigated. Assessors tended to agree on their placement of species in the highest (50-70%) and lowest risk categories (20-40%), but There was poor agreement on which species should be placed in the intermediate categories, Furthermore, the correspondence between The three classification methods was unpredictable, with large variation among assessors. These results highlight the importance of peer review and consensus among multiple assessors in species classifications and the need to be cautious with assessments carried out 4), a single assessor Greater consistency among assessors requires wide use of training manuals and formal methods for estimating parameters that allow uncertainties to be represented, carried through chains of calculations, and reported transparently.
Resumo:
A stochastic metapopulation model accounting for habitat dynamics is presented. This is the stochastic SIS logistic model with the novel aspect that it incorporates varying carrying capacity. We present results of Kurtz and Barbour, that provide deterministic and diffusion approximations for a wide class of stochastic models, in a form that most easily allows their direct application to population models. These results are used to show that a suitably scaled version of the metapopulation model converges, uniformly in probability over finite time intervals, to a deterministic model previously studied in the ecological literature. Additionally, they allow us to establish a bivariate normal approximation to the quasi-stationary distribution of the process. This allows us to consider the effects of habitat dynamics on metapopulation modelling through a comparison with the stochastic SIS logistic model and provides an effective means for modelling metapopulations inhabiting dynamic landscapes.
Resumo:
Ecosystems and the species and communities within them are highly complex systems that defy predictions with any degree of certainty. Managing and conserving these systems in the face of uncertainty remains a daunting challenge, particularly with respect to developing networks of marine reserves. Here we review several modelling frameworks that explicitly acknowledge and incorporate uncertainty, and then use these methods to evaluate reserve spacing rules given increasing levels of uncertainty about larval dispersal distances. Our approach finds similar spacing rules as have been proposed elsewhere - roughly 20-200 km - but highlights several advantages provided by uncertainty modelling over more traditional approaches to developing these estimates. In particular, we argue that uncertainty modelling can allow for (1) an evaluation of the risk associated with any decision based on the assumed uncertainty; (2) a method for quantifying the costs and benefits of reducing uncertainty; and (3) a useful tool for communicating to stakeholders the challenges in managing highly uncertain systems. We also argue that incorporating rather than avoiding uncertainty will increase the chances of successfully achieving conservation and management goals.
Resumo:
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.
Resumo:
The habituation to intense acoustic stimuli and the acquisition of differentially conditioned fear were assessed in 53 clinically anxious and 30 non-anxious control children and young adolescents. Anxious children tended to show larger electrodermal responses during habituation, but did not differ in blink startle latency or magnitude. After acquisition training, non-anxious children rated the CS + as more fear provoking and arousing than the CS- whereas the ratings of anxious children did not differ. However, anxious children rated the CS + as more fear provoking after extinction, a difference that was absent in non-anxious children. During extinction training, anxious children displayed larger blink magnitude facilitation during CS + and a trend towards larger electrodermal responses, a tendency not seen in nonanxious children. These data suggest that extinction of fear learning is retarded in anxious children. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The first step in conservation planning is to identify objectives. Most stated objectives for conservation, such as to maximize biodiversity outcomes, are too vague to be useful within a decision-making framework. One way to clarify the issue is to define objectives in terms of the risk of extinction for multiple species. Although the assessment of extinction risk for single species is common, few researchers have formulated an objective function that combines the extinction risks of multiple species. We sought to translate the broad goal of maximizing the viability of species into explicit objectives for use in a decision-theoretic approach to conservation planning. We formulated several objective functions based on extinction risk across many species and illustrated the differences between these objectives with simple examples. Each objective function was the mathematical representation of an approach to conservation and emphasized different levels of threat Our objectives included minimizing the joint probability of one or more extinctions, minimizing the expected number of extinctions, and minimizing the increase in risk of extinction from the best-case scenario. With objective functions based on joint probabilities of extinction across species, any correlations in extinction probabilities bad to be known or the resultant decisions were potentially misleading. Additive objectives, such as the expected number of extinctions, did not produce the same anomalies. We demonstrated that the choice of objective function is central to the decision-making process because alternative objective functions can lead to a different ranking of management options. Therefore, decision makers need to think carefully in selecting and defining their conservation goals.
Resumo:
Recent research on causal learning found (a) that causal judgments reflect either the current predictive value of a conditional stimulus (CS) or an integration across the experimental contingencies used in the entire experiment and (b) that postexperimental judgments, rather than the CS's current predictive value, are likely to reflect this integration. In the current study, the authors examined whether verbal valence ratings were subject to similar integration. Assessments of stimulus valence and contingencies responded similarly to variations of reporting requirements, contingency reversal, and extinction, reflecting either current or integrated values. However, affective learning required more trials to reflect a contingency change than did contingency judgments. The integration of valence assessments across training and the fact that affective learning is slow to reflect contingency changes can provide an alternative interpretation for researchers' previous failures to find an effect of extinction training on verbal reports of CS valence.
Resumo:
Classical metapopulation theory assumes a static landscape. However, empirical evidence indicates many metapopulations are driven by habitat succession and disturbance. We develop a stochastic metapopulation model, incorporating habitat disturbance and recovery, coupled with patch colonization and extinction, to investigate the effect of habitat dynamics on persistence. We discover that habitat dynamics play a fundamental role in metapopulation dynamics. The mean number of suitable habitat patches is not adequate for characterizing the dynamics of the metapopulation. For a fixed mean number of suitable patches, we discover that the details of how disturbance affects patches and how patches recover influences metapopulation dynamics in a fundamental way. Moreover, metapopulation persistence is dependent not only oil the average lifetime of a patch, but also on the variance in patch lifetime and the synchrony in patch dynamics that results from disturbance. Finally, there is an interaction between the habitat and metapopulation dynamics, for instance declining metapopulations react differently to habitat dynamics than expanding metapopulations. We close, emphasizing the importance of using performance measures appropriate to stochastic systems when evaluating their behavior, such as the probability distribution of the state of the. metapopulation, conditional on it being extant (i.e., the quasistationary distribution).
Resumo:
Many populations have a negative impact on their habitat, or upon other species in the environment, if their numbers become too large. For this reason they are often managed using some form of control. The objective is to keep numbers at a sustainable level, while ensuring survival of the population.+Here we present models that allow population management programs to be assessed. Two common control regimes will be considered: reduction and suppression. Under the suppression regime the previous population is maintained close to a particular threshold through near continuous control, while under the reduction regime, control begins once the previous population reaches a certain threshold and continues until it falls below a lower pre-defined level. We discuss how to best choose the control parameters, and we provide tools that allow population managers to select reduction levels and control rates. Additional tools will be provided to assess the effect of different control regimes, in terms of population persistence and cost.In particular we consider the effects of each regime on the probability of extinction and the expected time to extinction, and compare the control methods in terms of the expected total cost of each regime over the life of the population. The usefulness of our results will be illustrated with reference to the control of a koala population inhabiting Kangaroo Island, Australia.