24 resultados para dynamic response parameters
Resumo:
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.
Resumo:
The study to be presented is the first to use a new physiological device, the electromagnetic articulograph, to assess articulatory dysfunction in children with acquired brain injury. Two children with dysarthria subsequent to acquired brain injury participated in the study. One child, a female aged 12 years 9 months exhibited a mild-moderate ataxic dysarthria following traumatic head injury while the other, a male aged 13 years 10 months, demonstrated a moderate-severe flaccid-ataxic dysarthria also following traumatic head injury. The speed and accuracy of their tongue movements was assessed using the Carstens AG100 electromagnetic articulograph. Movement trajectories together with a range of quantitative kinematic parameters were estimated during performance of ten repetitions of the lingual consonants /t, s, k/ and consonant cluster /kl/ in the word initial position of single syllable words. A group of ten non-neurologically impaired children served as controls. Examination of the kinematic parameters, including movement trajectories, velocity, acceleration, deceleration, distance travelled and duration of movement, revealed differences in the speed and accuracy of the tongue movements in both children with acquired brain injury compared to those produced by the non-neurologically impaired controls. The results are discussed in relation to contemporary theories of the effects of acquired brain injury on neuromuscular function. The implications of the findings for the treatment of articulatory dysfunction in children with motor speech disorders associated with acquired brain injury are highlighted.
Resumo:
The temperature dependence of the X- and Q-band EPR spectra of Cs-2[Zn(H2O)(6)](ZrF6)(2) containing similar to1% Cu2+ is reported. All three molecular g-values vary with temperature, and their behavior is interpreted using a model in which the potential surface of the Jahn-Teller distorted Cu(H2O)(6)(2+) ion is perturbed by an orthorhombic strain induced by interactions with the surrounding lattice. The strain parameters are significantly smaller than those reported previously for the Cu(H2O)(6)(2+) ion in similar lattices. The temperature dependence of the two higher g-values suggests that in the present compound the lattice interactions change slightly with temperature. The crystal structure of the Cs-2[Zn(H2O)(6)](ZrF6)(2) host is reported, and the geometry of the Zn(H2O)(6)(2+) ion is correlated with lattice strain parameters derived from the EPR spectrum of the guest Cu2+ complex.
Resumo:
Purpose: Because it is believed that bone may respond to exercise differently at different ages, we compared bone responses in immature and mature rats after 12 wk of treadmill running. Methods: Twenty-two immature (5-wk-old) and 21 mature (17-wk-old) female Sprague Dawley rats were randomized into a running (trained, N = 10 immature, 9 mature) or a control group (controls, N 12 immature, 12 mature) before sacrifice 12 wk later. Rats ran on a treadmill five times per week for 60-70 min at speeds up to 26 m.min(-1). Both at baseline and after intervention, we measured total body, lumbar spine, and proximal femoral bone mineral, as well as total body soft tissue composition using dual-energy x-ray absorptiometry (DXA) in vivo. After sacrificing the animals, we measured dynamic and static histomorphometry and three-point bending strength of the tibia. Results: Running training was associated with greater differences in tibial subperiosteal area, cortical cross-sectional area, peak load, stiffness, and moment of inertia in immature and mature rats (P < 0.05). The trained rats had greater periosteal bone formation rates (P < 0.01) than controls, but there was no difference in tibial trabecular bone histomorphometry. Similar running-related gains were seen in DXA lumbar spine area (P = 0.04) and bone mineral content (BMC; P = 0.03) at both ages. For total body bone area and BMC, the immature trained group increased significantly compared with controls (P < 0.05), whereas the mature trained group gained less than did controls (P < 0.01). Conclusion: In this in vivo model, where a similar physical training program was performed by immature and mature female rats, we demonstrated that both age groups were sensitive to loading and that bone strength gains appeared to result more from changes in bone geometry than from improved material properties.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PET scanners, little use is made of earlier microvascular research in the compartmental models, which have become the standard model by which the vast majority of dynamic PET data are analysed. However, modern PET scanners provide data with a sufficient temporal resolution and good counting statistics to allow estimation of parameters in models with more physiological realism. We explore the standard compartmental model and find that incorporation of blood flow leads to paradoxes, such as kinetic rate constants being time-dependent, and tracers being cleared from a capillary faster than they can be supplied by blood flow. The inability of the standard model to incorporate blood flow consequently raises a need for models that include more physiology, and we develop microvascular models which remove the inconsistencies. The microvascular models can be regarded as a revision of the input function. Whereas the standard model uses the organ inlet concentration as the concentration throughout the vascular compartment, we consider models that make use of spatial averaging of the concentrations in the capillary volume, which is what the PET scanner actually registers. The microvascular models are developed for both single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Modeling physiological processes using tracer kinetic methods requires knowledge of the time course of the tracer concentration in blood supplying the organ. For liver studies, however, inaccessibility of the portal vein makes direct measurement of the hepatic dual-input function impossible in humans. We want to develop a method to predict the portal venous time-activity curve from measurements of an arterial time-activity curve. An impulse-response function based on a continuous distribution of washout constants is developed and validated for the gut. Experiments with simultaneous blood sampling in aorta and portal vein were made in 13 anesthetized pigs following inhalation of intravascular [O-15] CO or injections of diffusible 3-O[ C-11] methylglucose (MG). The parameters of the impulse-response function have a physiological interpretation in terms of the distribution of washout constants and are mathematically equivalent to the mean transit time ( T) and standard deviation of transit times. The results include estimates of mean transit times from the aorta to the portal vein in pigs: (T) over bar = 0.35 +/- 0.05 min for CO and 1.7 +/- 0.1 min for MG. The prediction of the portal venous time-activity curve benefits from constraining the regression fits by parameters estimated independently. This is strong evidence for the physiological relevance of the impulse-response function, which includes asymptotically, and thereby justifies kinetically, a useful and simple power law. Similarity between our parameter estimates in pigs and parameter estimates in normal humans suggests that the proposed model can be adapted for use in humans.
Resumo:
Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most meaningful data are derived from the time dependent increase in fluorescence intensity achieved upon application of continuous bright light to a previously dark adapted sample. The fluorescence response changes over time and is termed the Kautsky curve or chlorophyll fluorescence transient. Recently, Strasser and Strasser (1995) formulated a group of fluorescence parameters, called the JIP-test, that quantify the stepwise flow of energy through Photosystem II, using input data from the fluorescence transient. The purpose of this study was to establish relationships between the biochemical reactions occurring in PS II and specific JIP-test parameters. This was approached using isolated systems that facilitated the addition of modifying agents, a PS II electron transport inhibitor, an electron acceptor and an uncoupler, whose effects on PS II activity are well documented in the literature. The alteration to PS II activity caused by each of these compounds could then be monitored through the JIP-test parameters and compared and contrasted with the literature. The known alteration in PS II activity of Chenopodium album atrazine resistant and sensitive biotypes was also used to gauge the effectiveness and sensitivity of the JIP-test. The information gained from the in vitro study was successfully applied to an in situ study. This is the first in a series of four papers. It shows that the trapping parameters of the JIP-test were most affected by illumination and that the reduction in trapping had a run-on effect to inhibit electron transport. When irradiance exposure proceeded to photoinhibition, the electron transport probability parameter was greatly reduced and dissipation significantly increased. These results illustrate the advantage of monitoring a number of fluorescence parameters over the use of just one, which is often the case when the F-V/F-M ratio is used.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.