31 resultados para cutaneous nerve fibre
Resumo:
Performance in sprint exercise is determined by the ability to accelerate, the magnitude of maximal velocity and the ability to maintain velocity against the onset of fatigue. These factors are strongly influenced by metabolic and anthropometric components. Improved temporal sequencing of muscle activation and/or improved fast twitch fibre recruitment may contribute to superior sprint performance. Speed of impulse transmission along the motor axon may also have implications on sprint performance. Nerve conduction velocity (NCV) has been shown to increase in response to a period of sprint training. However, it is difficult to determine if increased NCV is likely to contribute to improved sprint performance. An increase in motoneuron excitability, as measured by the Hoffman reflex (H-reflex), has been reported to produce a more powerful muscular contraction, hence maximising motoneuron excitability would be expected to benefit sprint performance. Motoneuron excitability can be raised acutely by an appropriate stimulus with obvious implications for sprint performance. However, at rest reflex has been reported to be lower in athletes trained for explosive events compared with endurance-trained athletes. This may be caused by the relatively high, fast twitch fibre percentage and the consequent high activation thresholds of such motor units in power-trained populations. In contrast, stretch reflexes appear to be enhanced in sprint athletes possibly because of increased muscle spindle sensitivity as a result of sprint training. With muscle in a contracted state, however, there is evidence to suggest greater reflex potentiation among both sprint and resistance-trained populations compared with controls. Again this may be indicative of the predominant types of motor units in these populations, but may also mean an enhanced reflex contribution to force production during running in sprint-trained athletes. Fatigue of neural origin both during and following sprint exercise has implications with respect to optimising training frequency and volume. Research suggests athletes are unable to maintain maximal firing frequencies for the full duration of, for example, a 100m sprint. Fatigue after a single training session may also have a neural manifestation with some athletes unable to voluntarily fully activate muscle or experiencing stretch reflex inhibition after heavy training. This may occur in conjunction with muscle damage. Research investigating the neural influences on sprint performance is limited. Further longitudinal research is necessary to improve our understanding of neural factors that contribute to training-induced improvements in sprint performance.
Resumo:
We show here that the neurotrophin nerve growth factor (NGF), which has been shown to be a mitogen for breast cancer cells, also stimulates cell survival through a distinct signaling pathway. Breast cancer cell lines (MCF-7, T47-D, BT-20, and MDA-MB-231) were found to express both types of NGF receptors: p140(trkA) and p75(NTR). The two other tyrosine kinase receptors for neurotrophins, TrkB and TrkC, were not expressed. The mitogenic effect of NGF on breast cancer cells required the tyrosine kinase activity of p140(trkA) as well as the mitogen-activated protein kinase (MAPK) cascade, but was independent of p75(NTR). I, contrast, the anti-apoptotic effect of NGF (studied using the ceramide analogue C2) required p75(NTR) as well as the activation of the transcription factor NF-kB, but neither p140(trkA) nor MAPK was necessary. Other neurotrophins (BDNF, NT-3, NT-4/5) also induced cell survival, although not proliferation, emphasizing the importance of p75(NTR) in NGF-mediated survival. Both the pharmacological NF-KB inhibitor SN50, and cell transfection with IkBm, resulted in a diminution of NGF anti-apoptotic effect. These data show that two distinct signaling pathways are required for NGF activity and confirm the roles played by p75(NTR) and NF-kappaB in the activation of the survival pathway in breast cancer cells.
Resumo:
Early endosomal antigen I (EEAI) is known to be a marker of early endosomes and in cultured hippocampal neurons it preferentially localizes to the dendritic but not the axonal compartment. We show in cultured dorsal root ganglia and superior cervical ganglia neurons that EEAI localizes to the cell bodies and the neurites of both sensory and sympathetic neurons. We then show in vivo using a ligated rat sciatic nerve that EEAI significantly accumulates on the proximal side and not on the distal side of the ligation. This suggests that EEAI is transported in the anterograde direction in axons either as part of the homeostatic process or to the nerve ligation site in response to nerve injury. NeuroReport 12:281-284 (C) 2001 Lippincott Williams & Wilkins.
Resumo:
When patients undergo a magnetic resonance imaging scan, they are subject to both strong static and temporal magnetic fields. The temporal fields are designed to vary at each point in the region being imaged. This is achieved by the use of gradient coils. However, when the gradient coils are switched very rapidly, the strongly time-varying magnetic fields produced can be responsible for stimulating nerves in the peripheral regions of the body. This paper gives a somewhat novel explanation for this phenomenon. The physical mechanism suggested is supported by an illustrative theoretical calculation.
Resumo:
Germline mutations of the PTEN tumor-suppressor gene, on 10q23, cause Cowden syndrome, an inherited hamartoma syndrome with a high risk of breast, thyroid and endometrial carcinomas and, some suggest, melanoma. To date, most studies which strongly implicate PTEN in the etiology of sporadic melanomas have depended on cell lines, short-term tumor cultures and noncultured metastatic melanomas. The only study which reports PTEN protein expression in melanoma focuses on cytoplasmic expression, mainly in metastatic samples. To determine how PTEN contributes to the etiology or the progression of primary cutaneous melanoma, we examined cytoplasmic and nuclear PTEN expression against clinical and pathologic features in a population-based sample of 150 individuals with incident primary cutaneous melanoma. Among 92 evaluable samples, 30 had no or decreased cytoplasmic PTEN protein expression and the remaining 62 had normal PTEN expression. In contrast, 84 tumors had no or decreased nuclear expression and 8 had normal nuclear PTEN expression. None of the clinical features studied, such as Clark's level and Breslow thickness or sun exposure, were associated with cytoplasmic PTEN expressional levels. An association with loss of nuclear PTEN expression was indicated for anatomical site (p = 0.06) and mitotic index (p = 0.02). There was also an association for melanomas to either not express nuclear PTEN or to express p53 alone, rather than both simultaneously (p = 0.02). In contrast with metastatic melanoma, where we have shown previously that almost two-thirds of tumors have some PTEN inactivation, only one-third of primary melanomas had PTEN silencing. This suggests that PTEN inactivation is a late event likely related to melanoma progression rather than initiation. Taken together with our previous observations in thyroid and islet cell tumors, our data suggest that nuclear-cytoplasmic partitioning of PTEN might also play a role in melanoma progression. (C) 2002 Wiley-Liss, Inc.
Resumo:
Insect ganglia are often composed of fused segmental units or neuromeres. We estimated the evolution of the ventral nerve cord (VNC) in higher Diptera by comparing the patterns of neuromere fusion among 33 families of the Brachycera. Variation within families is uncommon, and VNC architecture does not appear to be influenced by body shape. The outgroup pattern, seen in lower Diptera, is fusion of neuromeres belonging to thoracic segments 1 and 2 (T1 and T2), and fusion of neuromeres derived from T3 and abdominal segment 1 (A1). In the abdomen, neuromeres A7-10 are fused into the terminal abdominal ganglion (TAG). Increased neuromere fusion is a feature of the Brachycera. No brachyceran shows less fusion than the outgroups. We established six pattern elements; (1) fusion of T1 and T2, (2) fusion of T3 and A1, (3) fusion of the T1/T2 andT3/A1 ganglia, (4) increase in the number of neuromeres comprising the TAG, (5) anteriorward fusion of abdominal neuromeres, and (6) the complete fusion of thoracic and abdominal neuromeres into a synganglion. States 1 and 2 are present in the outgroup lower Diptera, and state 3 in the Xylophagomorpha, Stratiomyomorpha, Tabanomorpha and Cyclorrhapha. State 4 is a feature of all Eremoneura. State 5 is present in Cyclorrhapha only, and state 6, fusion into a synganglion, has evolved at least 4 times in the Eremoneura. Synapomorphies are provided for the Cyclorrhapha and Muscoidea, and a grouping of three basal brachyceran infraorders Xylophagomorpha, Stratiomyomorpha and Tabanomorpha. The patterns of fusion suggest that VNC architecture has evolved irreversibly, in accordance with Dollo's law.
Resumo:
Involvement of nerve tissue may contribute to the persistence of pain following a whiplash injury. This study aimed to investigate responses to the brachial plexus provocation test (BPPT) in 156 subjects with chronic whiplash associated disorder (WAD) with and without associated arm pain and 95 asymptomatic control subjects. The range of elbow extension (ROM) and visual analogue scale (VAS) pain scores were measured. Subjects with chronic WAD demonstrated significantly less ROM and higher VAS scores with the BPPT than the asymptomatic subjects (P
Resumo:
Axonal regeneration of retinal ganglion cells (RGCs) into a normal or pre-degenerated peripheral nerve graft after an optic nerve pre-lesion was investigated. A pre-lesion performed 1-2 weeks before a second lesion has been shown to enhance axonal regeneration in peripheral nerves (PN) but not in optic nerves (ON) in mammals. The lack of such a beneficial pre-lesion effect may be due to the long delay (1-6 weeks) between the two lesions since RGCs and their axons degenerate rapidly 1-2 weeks following axotomy in adult rodents. The present study examined the effects of the proximal and distal ON pre-lesions with a shortened delay (0-8 days) on axonal regeneration of RGCs through a normal or pre-degenerated PN graft. The ON of adult hamsters was transected intraorbitallv at 2 mm. (proximal lesion) or intracranially at 7 mm (distal lesion) from the optic disc. The pre-lesioned ON was re-transected at 0.5 mm from the disc after 0, 1, 2, 4, or 8 days and a normal or a pre-degenerated PN graft was attached onto the ocular stump. The number of RGCs regenerating their injured axons into the PN graft was estimated by retrograde labeling with FluoroGold 4 weeks after grafting. The number of regenerating RGCs decreased significantly when the delay-time increased in animals with both the ON pre-lesions (proximal or distal) compared to control animals without an ON pre-lesion. The proximal ON pre-lesion significantly reduced the number of regenerating RGCs after a delay of 8 days in comparison with the distal lesion. However, this adverse effect can be overcome, to some degree, by a pre-degenerated PN graft applied 2, 4, or 8 days after the distal ON pre-lesion enhanced more RGCs to regenerate than the normal PN graft. Thus, in order to obtain the highest number of regenerating RGCs, a pre-degenerated PN should be grafted immediately after an ON lesion.
Resumo:
We report a case of a patient with the triad of retinoblastoma, dysplastic naevus syndrome (DNS) and multiple cutaneous melanomas. The combination of retinoblastoma and DNS is a significant risk factor for the development of cutaneous melanoma. This risk extends to family members. We recommend that survivors of (inherited) retinoblastoma and their relatives are closely screened for the presence of dysplastic naevi. (C) 2002 Lippincott Williams Wilkins.
Resumo:
The apparent L-[H-3]glutamate uptake rate (v') was measured in synaptic vesicles isolated from cerebral cortex synaptosomes prepared from autopsied Alzheimer and non-Alzheimer dementia cases, and age-matched controls. The initial synaptosome preparations exhibited similar densities of D-[H-3]aspartate membrane binding sites (B-MAX values) in the three groups. In control brain the temporal cortex D-[H-3]aspartate B-MAX was 132% of that in motor cortex, parallel with the L- [H-3]glutamate v' values (temporal = 139% of motor; NS). Unlike D- [H-3]aspartate B-MAX values, L- [H-3]glutamate v' values were markedly and selectively lower in Alzheimer brain preparations than in controls, particularly in temporal cortex. The difference could not be attributed to differential effects of autopsy interval or age at death. Non-Alzheimer dementia cases resembled controls. The selective loss of vesicular glutamate transport is consistent with a dysfunction in the recycling of transmitter glutamate.
Resumo:
This study investigated the haemodynamic response to the 90-minute application of 85 Hz transcutaneous electrical nerve stimulation (TENS) to the T1 and T5 nerve roots. Comparison was made between 20 healthy subjects who had TENS stimulation and a separate group of 20 healthy subjects who rested for 90 minutes. Pulse and blood pressure were measured just prior to the start of TENS stimulation, after 30 minutes of stimulation, and after 90 minutes of stimulation (immediately after stopping TENS) or at completion of the rest time depending on group allocation. The rate pressure product was calculated from the pulse and systolic blood pressure data. Multivariate repeated measures analysis showed a significant group effect for TENS (p = 0.048). Univariate repeated measures analyses showed a significant group by time effect due to TENS on systolic blood pressure over the 90-minute time period (p = 0.028). Separate group repeated measures ANOVA showed a significant decline in heart rate (p = 0.000), systolic blood pressure (p = 0.013) and rate pressure product (p = 0.000) for the TENS group, while the control resting group showed a significant decline in heart rate only (p = 0.04). The application of 85 Hz TENS to the upper thoracic nerve roots causes no adverse haemodynamic effects in healthy subjects.
Resumo:
Background: Some melanomas form on sun-exposed body sites, whereas others do not. We previously proposed that melanomas at different body sites arise through different pathways that have different associations with melanocytic nevi and solar keratoses. We tested this hypothesis in a case-case comparative study of melanoma patients in Queensland, Australia. Methods: We randomly selected patients from among three prespecified groups reported to the population-based Queensland Cancer Registry: those with superficial spreading or nodular melanomas of the trunk (n = 154, the reference group), those with such melanomas of the head and neck (n = 77, the main comparison group), and those with lentigo maligna melanoma (LMM) (n = 75, the chronic sun-exposed group). Each participant completed a questionnaire, and a research nurse counted melanocytic nevi and solar keratoses. We calculated exposure odds ratios (ORs) and 95% confidence intervals (CIs) to quantify the association between factors of interest and each melanoma group. Results: Patients with head and neck melanomas, compared with patients with melanomas of the trunk, were statistically significantly less likely to have more than 60 nevi (OR = 0.34, 95% CI = 0.15 to 0.79) but were statistically significantly more likely to have more than 20 solar keratoses (OR = 3.61, 95% CI = 1.42 to 9.17) and also tended to have a past history of excised solar skin lesions (OR = 1.87, 95% CI = 0.89 to 3.92). Patients with LMM were also less likely than patients with truncal melanomas to have more than 60 nevi (OR = 0.32, 95% CI = 0.14 to 0.75) and tended toward more solar keratoses (OR = 2.14, 95% CI = 0.88 to 5.16). Conclusions: Prevalences of nevi and solar keratoses differ markedly between patients with head and neck melanomas or LMM and patients with melanomas of the trunk. Cutaneous melanomas may arise through two pathways, one associated with melanocyte proliferation and the other with chronic exposure to sunlight.